分析 (1)利用余弦函數(shù)的值域可求函數(shù)的最大值,由2kπ≤2x+$\frac{π}{6}$≤2kπ+π,k∈Z即可解得f(x)的單調(diào)遞減區(qū)間.
(2)由已知解得:cos(2α+$\frac{π}{6}$)=-1,由α∈(0,$\frac{π}{2}$),可得2α+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{7π}{6}$),解得α,即可利用特殊角的三角函數(shù)值計算得解.
解答 解:(1)∵cos(2x+$\frac{π}{6}$)≤1,
∴f(x)=2$\sqrt{3}$cos(2x+$\frac{π}{6}$)+3的最大值為:2$\sqrt{3}$+3.
由2kπ≤2x+$\frac{π}{6}$≤2kπ+π,k∈Z即可解得f(x)的單調(diào)遞減區(qū)間為:[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z.
(2)∵2$\sqrt{3}$cos(2α+$\frac{π}{6}$)+3=3-2$\sqrt{3}$,解得:cos(2α+$\frac{π}{6}$)=-1.
∵α∈(0,$\frac{π}{2}$),2α+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{7π}{6}$).
∴解得:2α+$\frac{π}{6}$=π,可得:α=$\frac{5π}{12}$.
∴tan$\frac{4}{5}$α=tan($\frac{4}{5}×\frac{5π}{12}$)=tan$\frac{π}{3}$=$\sqrt{3}$.
點評 本題主要考查了余弦函數(shù)的圖象和性質(zhì),特殊角的三角函數(shù)值的應用,考查了計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\overrightarrow{a}$=$\overrightarrow{OA}$ | B. | $\overrightarrow{a}$=k$\overrightarrow{OB}$ | C. | $\overrightarrow{a}$=p$\overrightarrow{OA}$+λ$\overrightarrow{OB}$ | D. | 以上均不能 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com