4.設(shè)集合A={x|x2+2x-3=0|與B={x|ax+1=0|,試寫出B⊆A的一個充分不必要條件.

分析 由B⊆A時,得a=0,或a=-1,或a=$\frac{1}{3}$,進而可得B⊆A的一個充分不必要條件.

解答 解:∵集合A={x|x2+2x-3=0}={1,-3},
當(dāng)a=0時,B={x|ax+1=0}=∅,
但B⊆A時,a=0,或a=-1,或a=$\frac{1}{3}$,
故a=0是B⊆A的一個充分不必要條件.(答案不唯一,也可以是a=-1,或a=$\frac{1}{3}$)

點評 本題考查的知識點是集合的包含關(guān)系判斷及應(yīng)用,充要條件的定義,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知M是橢圓$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1上的點,F(xiàn)1,F(xiàn)2為橢圓的焦點,且∠F1MF2=$\frac{π}{2}$,求△F1MF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求經(jīng)過點A(2,$\frac{2\sqrt{3}}{3}$)、B(3,-2$\sqrt{2}$)的雙曲線的標(biāo)準(zhǔn)方程,并寫出其焦點、漸近線和離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若函數(shù)f(x)=2cos(ωx+φ)對任意x都有f($\frac{3π}{4}$+x)=f($\frac{3π}{4}$-x),則f($\frac{3π}{4}$)=(  )
A.2B.-2C.2或-2D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)f(x)=2$\sqrt{3}$cos(2x+$\frac{π}{6}$)+3.
(1)求f(x)的最大值及單調(diào)遞減區(qū)間;
(2)若銳角α滿足f(α)=3-2$\sqrt{3}$,求tan$\frac{4}{5}$α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.比較大。2-3333,3-2222,5-1111

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某工程由A、B、C、D四道工序組成,完成他們需用時間依次為2,5,x,4天,四道工序的先后順序及相互關(guān)系是:A、B可以同時開工;A完成后,C可以開工;B、C完成后,D可以開工,根據(jù)題意畫出工序圖.若該工程總時數(shù)為9天,則完成工序C需要的天數(shù)x最大是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.$\underset{lim}{n→∞}$$\frac{{a}^{n+1}-{a}^{n-1}}{1{+a}^{n}}$(a>0)=$\left\{\begin{array}{l}{a-\frac{1}{a},a>1}\\{0,0<a≤1}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)a>0,b>0,則下列不等式中不恒成立的是( 。
A.$(a+b)(\frac{1}{a}+\frac{1})≥4$B.a3+b3≥2ab2C.$\sqrt{|a-b|}≥\sqrt{a}-\sqrt$D.a2+b2+2≥2a+2b

查看答案和解析>>

同步練習(xí)冊答案