x≤2
y≤2
x+y≥3
,則目標(biāo)函數(shù)z=
x+2y
x
的取值范圍是( 。
A、[2,5]
B、[1,5]
C、[
1
2
,2]
D、[2,6]
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,則z=
x+2y
x
=1+2•
y
x
,設(shè)k=
y
x
.利用k的幾何意義,求出k的取值范圍,即可得到結(jié)論.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域,
∵z=
x+2y
x
=1+2•
y
x

∴設(shè)k=
y
x

則k的幾何意義為過原點(diǎn)的直線的斜率,
由圖象可知,直線OA的斜率最大,直線OB的斜率最小,
y=2
x+y=3
,解得
x=1
y=2
,即A(1,2),此時(shí)k=
2
1
=2
,
x=2
x+y=3
,解得
x=2
y=1
,即B(2,1),此時(shí)k=
1
2
,
1
2
≤k≤2

則2≤1+2k≤5,
即2≤z≤5,
故選:A
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,將條件進(jìn)行轉(zhuǎn)化,利用z的幾何意義是解決本題的關(guān)鍵.要求熟練掌握直線斜率的計(jì)算公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x2+x,x≤1
log
1
3
x,x>1
,若對(duì)任意的x∈R,不等式f(x)≤m2-
3
4
m恒成立,則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x+
1
0
3(
x
-x2)dx
f(x+2)
(x≥4)
(x<4)
,則f(log23)=(  )
A、13B、19C、37D、49

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(1,2),
n
=(2,1),則(
m
n
)(
m
-2
n
)等于(  )
A、(-12,0)B、4
C、(-3,0)D、-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是( 。
A、命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
B、a∈R,“
1
a
<1”是“a>1”的必要不充分條件
C、“p∧q為真命題”是“p∨q為真命題”的必要不充分條件
D、命題p:“?x∈R,sinx+cosx≤
2
”,則¬p是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)已知如圖,四面體ABCD中,P,Q,R分別在棱BC,CD,DA上,且BP=2PC,CQ=2QD,DR=RA,則A,B兩點(diǎn)到平面PQR的距離之比為( 。
A、1:4B、1:3
C、1:2D、1:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,∠A,∠B,∠C的對(duì)邊分別為a,b,c,若a=1且cosA=
4
5
,則△ABC的外接圓的直徑等于( 。
A、
4
5
B、
5
4
C、
3
5
D、
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(2-a)x-2(1+lnx)+a.
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(0,
1
2
)無零點(diǎn),求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax-2-lnx(a∈R).
(Ⅰ)若f(x)在點(diǎn)(e,f(e))處的切線為x-ey-2e=0,求a的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)x>0時(shí),求證:f(x)-ax+ex>0.

查看答案和解析>>

同步練習(xí)冊(cè)答案