6.不等式組$\left\{\begin{array}{l}x≤0\\ x+2y+2≥0\\ y-x-2≤0\end{array}\right.$表示的平面區(qū)域的面積為3.

分析 作$\left\{\begin{array}{l}x≤0\\ x+2y+2≥0\\ y-x-2≤0\end{array}\right.$表示的平面區(qū)域,從而利用三角形的面積公式求解.

解答 解:作$\left\{\begin{array}{l}x≤0\\ x+2y+2≥0\\ y-x-2≤0\end{array}\right.$表示的平面區(qū)域如下,
,
利用三角形的面積公式可得,
S=$\frac{3×2}{2}$=3,
故答案為:3.

點(diǎn)評(píng) 本題考查了不等式組表示的平面區(qū)域的作法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,在四棱錐A-BCDE中,底面DEBC為矩形,側(cè)面ABC⊥底面BCDE,BC=2,CD=$\sqrt{2}$,AB=AC.
(1)求證:BE⊥面ABC;
(2)設(shè)△ABC為等邊三角形,求直線CE與平面ABE所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.執(zhí)行如圖的程序框圖,如果輸入的t=0.1,則輸出的n=( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.正三棱柱ABC-A1B1C1中,AB=2=AA1,則直線AC1與平面BCC1B1所成角的正弦值為$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合M={x|-2≤x≤2},N={x|x-1>0},則M∩N=( 。
A.{x|1<x≤2}B.{x|-2≤x<1}C.{x|1≤x≤2}D.{x|x≥-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在平面直角坐標(biāo)系xOy中,已知∠α的頂點(diǎn)為原點(diǎn)O,其始邊與x軸正方向重合,終邊過(guò)兩曲線y=$\sqrt{x+3}$和y=$\sqrt{1-x}$的交點(diǎn),則cos2α+cot($\frac{3π}{2}$+α)=-$\frac{1}{3}$+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合A={3,4,5},B={2,3},則A∩B等于( 。
A.{3}B.{3,4}C.{3,4,5}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若α,β∈(0,π),則“α=β”是“cosα=cosβ”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的離心率$e=\frac{{\sqrt{3}}}{2}$,原點(diǎn)到過(guò)點(diǎn)A(-a,0),B(0,b)
的直線的距離是$\frac{{4\sqrt{5}}}{5}$.
(1)求橢圓C的方程;
(2)設(shè)動(dòng)直線l與兩定直線l1:x-2y=0和l2:x+2y=0分別交于P,Q兩點(diǎn).若直線l總與橢圓C有且只有一個(gè)公共點(diǎn),試探究:△OPQ的面積是否存在最小值?若存在,求出該最小值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案