【題目】表示值域為R的函數(shù)組成的集合,表示具有如下性質(zhì)的函數(shù)組成的集合:對于函數(shù),存在一個正數(shù),使得函數(shù)的值域包含于區(qū)間.例如,當(dāng)時,.現(xiàn)有如下命題:

設(shè)函數(shù)的定義域為,則的充要條件是,;

函數(shù)的充要條件是有最大值和最小值;

若函數(shù),的定義域相同,且,,則;

若函數(shù))有最大值,則.

其中的真命題有 .(寫出所有真命題的序號)

【答案】①③④

【解析】

試題若fx∈A,則fx)的值域為R,于是,對任意的b∈R,一定存在a∈D,使得fa)=b,故正確.

取函數(shù)fx)=x(-1x1),其值域為(-1,1),于是,存在M1,使得fx)的值域包含于[MM][1,1],但此時fx)沒有最大值和最小值,故錯誤.

當(dāng)fx∈A時,由可知,對任意的b∈R,存在a∈D,使得fa)=b,所以,當(dāng)gx∈B時,對于函數(shù)fx)+gx),如果存在一個正數(shù)M,使得fx)+gx)的值域包含于[M,M],那么對于該區(qū)間外的某一個b0∈R,一定存在一個a0∈D,使得fa0)=bga0),即fa0)+ga0)=b0[M,M],故正確.

對于fx)=alnx2)+x>-2),當(dāng)a0a0時,函數(shù)fx)都沒有最大值.要使得函數(shù)fx)有最大值,只有a0,此時fx)=x>-2).

易知fx∈[],所以存在正數(shù)M,使得fx∈[M,M],故正確.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,曲線y=f(x)在點(e2 , f(e2))處的切線與直線2x+y=0垂直(其中e為自然對數(shù)的底數(shù)).
(1)求f(x)的解析式及單調(diào)遞減區(qū)間;
(2)若存在x0∈[e,+∞),使函數(shù)g(x)=aelnx+ lnxf(x)≤a成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司有A、B、C、D、E五輛汽車,其中A、B兩輛汽車的車牌尾號均為1,C、D兩輛汽車的車牌尾號均為2,E車的車牌尾號為6.已知在非限行日,每輛車可能出車或不出車,A、B、E三輛汽車每天出車的概率均為 ,C、D兩輛汽車每天出車的概率均為 ,五輛汽車是否出車相互獨立,該公司所在地區(qū)汽車限行規(guī)定如下:

工作日

星期一

星期二

星期三

星期四

星期五

限行車牌尾號

0和5

1和6

2和7

3和8

4和9

例如,星期一禁止車牌尾號為0和5的車輛通行.
(1)求該公司在星期一至少有2輛汽車出車的概率;
(2)設(shè)X表示該公司在星期二和星期三兩天出車的車輛數(shù)之和,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)y=f″(x)是y=f′(x)的導(dǎo)數(shù).某同學(xué)經(jīng)過探究發(fā)現(xiàn),任意一個三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有對稱中心(x0 , f(x0)),其中x0滿足f″(x0)=0.已知函數(shù)f(x)= x3 x2+3x﹣ ,則f( )+f( )+f( )+…+f( )=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點為,準(zhǔn)線為,是拋物線上的兩個動點,且滿足.設(shè)線段的中點上的投影為,則的最大值是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線y2=4x的內(nèi)接三角形的一個頂點在原點,三邊上的高線都通過拋物線的焦點,求此三角形外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .
(1)當(dāng) 時,求函數(shù) 的單調(diào)區(qū)間和極值;
(2)求函數(shù) 在區(qū)間 上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的一個焦點與拋物線 的焦點 重合,且點 到直線 的距離為 , 的公共弦長為 .
(1)求橢圓 的方程及點 的坐標(biāo);
(2)過點 的直線 交于 兩點,與 交于 兩點,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面α⊥平面β,α∩β=直線l,A,C是α內(nèi)不同的兩點,B,D是β內(nèi)不同的兩點,且A,B,C,D直線l,M,N分別是線段AB,CD的中點.下列判斷正確的是(
A.當(dāng)|CD|=2|AB|時,M,N兩點不可能重合
B.M,N兩點可能重合,但此時直線AC與直線l不可能相交
C.當(dāng)AB與CD相交,直線AC平行于l時,直線BD可以與l相交
D.當(dāng)AB,CD是異面直線時,MN可能與l平行

查看答案和解析>>

同步練習(xí)冊答案