已知{an}為等比數(shù)列,且a1a2=-
1
3
,a3=
1
9
,則數(shù)列{an}的通項(xiàng)公式是
 
考點(diǎn):等比數(shù)列的性質(zhì)
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:利用{an}為等比數(shù)列,且a1a2=-
1
3
,a3=
1
9
,求出a1=1,q=-
1
3
,即可求出數(shù)列{an}的通項(xiàng)公式.
解答: 解:設(shè)an=a1qn-1,依題意,有a1a1q=-
1
3
,a1q2=
1
9
,
解得a1=1,q=-
1
3

∴an=(-
1
3
n-1
故答案為:an=(-
1
3
n-1
點(diǎn)評(píng):本題考查等比數(shù)列的性質(zhì),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圓ρ=5cosθ-5
3
sinθ的圓心的極坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c,d均為實(shí)數(shù),則下列結(jié)論正確的是
 
(填入正確序號(hào))
①若a>b,c>d,則a+c>b+d
②若ab>0,
c
a
-
d
b
>0,則bc-ad>0
③若bc-ad>0,
c
a
-
d
b
>0,則ab>0
④若a>b,則ac2>bc2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=
1
2
(sinx+cosx)-
1
2
|cos-sinx|,下列說法正確的是
 

(1)當(dāng)且僅當(dāng)2kπ<x<2kπ+
π
2
(k∈Z)時(shí),f(x)>0;
(2)當(dāng)且僅當(dāng)x=2kπ+
π
2
(k∈Z)時(shí),該函數(shù)取得最大值;
(3)該函數(shù)的值域是[-1,1];
(4)該函數(shù)是以π為最小正周期的周期函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的偶函數(shù)f(x)滿足f(-1)=0,并且f(x)在(-∞,0)上為增函數(shù).若af(a)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=(3m2-m-1)xm是冪函數(shù),則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定集合A、B,定義A※B={x|x=m-n,m∈A,n∈B},若A={4,5,6},B={1,2,3},則集合A※B中的所有元素之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知在某點(diǎn)B處測得建筑物AE的頂端A的仰角為θ,沿BE方向前進(jìn)30m至點(diǎn)C處,測得頂端A的仰角為2θ,再繼續(xù)前進(jìn)10
3
m至點(diǎn)D處,測得頂端A的仰角為4θ,則建筑物AE的高為
 
m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正項(xiàng)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S2012=2012,則
1
a1
+
1
a2012
的最小值為( 。
A、1B、2C、4D、8

查看答案和解析>>

同步練習(xí)冊答案