19.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,過F1作垂直于x軸的直線與橢圓相交,其中一個(gè)交點(diǎn)為P,則|PF2|的值為( 。
A.$\frac{47}{5}$B.$\frac{34}{5}$C.$\frac{18}{5}$D.$\frac{16}{5}$

分析 求得橢圓的a,b,c,令x=-3,代入橢圓方程,求得y,可得|PF1|=$\frac{16}{5}$,再由橢圓的定義計(jì)算可得所求值.

解答 解:橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的a=5,b=4,c=3,
令x=-3,可得y=±4$\sqrt{1-\frac{9}{25}}$=±$\frac{16}{5}$,
即有|PF1|=$\frac{16}{5}$,
由橢圓的定義可得|PF1|+|PF2|=2a=10,
即有|PF2|=10-|PF1|=10-$\frac{16}{5}$=$\frac{34}{5}$.
故選B.

點(diǎn)評 本題考查橢圓的定義、方程和性質(zhì),注意運(yùn)用橢圓的定義,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)的定義域?yàn)镽且f(x)=$\left\{\begin{array}{l}{{x}^{2}+2,x∈[0,1]}\\{2-{x}^{2},x∈(-1,0)}\end{array}\right.$,f(x+1)=f(x-1),則方程f(x)=$\frac{2x+1}{x}$在區(qū)間[-3,3]的所有實(shí)根之和為( 。
A.-8B.-2C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.兩個(gè)圓錐的母線長相等,側(cè)面展形圓心角分別為120°和240°,體積分別為V1和V2,則V1:V2等于( 。
A.1:8B.1:10C.$\sqrt{10}$:10D.$\sqrt{5}$:5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖:點(diǎn)E、F、G、H分別是空間四邊形的邊AB、BC、CD、DA上的點(diǎn),且直線EH與直線FG交于點(diǎn)O,求證:B、D、O三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知集合U=R,A={x|x2+$\frac{{y}^{2}}{4}$=1},B={y|y=x+1,x∈A},則(∁uA)∩(∁UB)=(-∞,-1)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)y=($\frac{2}{3}$)x,當(dāng)x∈(0,+∞)時(shí),y的取值范圍是( 。
A.(0,$\frac{2}{3}$)B.(0,+∞)C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)當(dāng)tanα=3,求cos2α-3sinαcosα的值;
(2)角α終邊上的點(diǎn)P與A(a,2a)關(guān)于x軸對稱(a>0),角β終邊上的點(diǎn)Q與A關(guān)于直線y=x對稱,求sinα•cosα+sinβ•cosβ+tanα•tanβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)a≥0,若函數(shù)y=cos2x-asinx+b的值域?yàn)閇-4,0].
(1)試求a與b的值;
(2)求出使y取得最大值、最小值時(shí)的x值;
(3)求函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若f(x)=logax在(0,+∞)上是減函數(shù),則a的取值范圍是(0,1).

查看答案和解析>>

同步練習(xí)冊答案