20.將二進(jìn)制數(shù)10001(2)化為五進(jìn)制數(shù)為( 。
A.32(5)B.23(5)C.21(5)D.12(5)

分析 先將二進(jìn)制化為十進(jìn)制,然后利用十進(jìn)制化為其它進(jìn)制的“除k取余法”方法即可求出所求.

解答 解:根據(jù)二進(jìn)制和十進(jìn)制之間的關(guān)系得:
10001(2)=1×20+0×21+0×22+0×23+1×24=1+16=17,
再利用“除5取余法”可得:
17÷5=3…2,
3÷5=0…3
∴化成5進(jìn)制是32(5)
故選:A.

點(diǎn)評(píng) 本題以進(jìn)位制的轉(zhuǎn)換為背景考查算法的多樣性,解題的關(guān)鍵是熟練掌握進(jìn)位制的轉(zhuǎn)化規(guī)則,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知向量$\overrightarrow{a}$(-2,1),$\overrightarrow$=(1,-2),若m$\overrightarrow{a}$+n$\overrightarrow$=(-10,8)(m,n∈R),則m+n的值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)x、y滿足約束條件$\left\{\begin{array}{l}{3x-y-2≤0}\\{x-y≥0}\\{x≥0,y≥0}\end{array}\right.$,若目標(biāo)函數(shù)z=ax+2by(a>0,b>0)的最大值為1,則$\frac{1}{a}$+$\frac{1}$的最小值為( 。
A.3+2$\sqrt{2}$B.3-2$\sqrt{2}$C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f($\sqrt{x}$+1)=x-2$\sqrt{x}$,則f(x)的解析式是f(x)=(x-1)2-4x+3(x≥1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|(0<x≤2)}\\{-\frac{1}{2}x+2(x>2)}\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),則abc的取值范圍是(  )
A.(1,4)B.(2,4)C.(0,8)D.(2,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知關(guān)于x的方程x2-2mx+3+4m2-6=0的兩根為α,β,試求(α-1)2+(β-1)2的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖(1),在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.將△ADC沿AC折起,使平面ACD⊥平面ABC,得到幾何體D-ABC,如圖所示(2).

(1)求幾何體D-ABC的體積;
(2)求二面角D-AB-C的正切值;
(3)求幾何體D-ABC的外接球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線${x^2}-\frac{y^2}{8}=1$的左頂點(diǎn)為A1,右焦點(diǎn)為F2,P為雙曲線右支上一點(diǎn),則$\overrightarrow{P{A_1}}•\overrightarrow{P{F_2}}$的最小值為( 。
A.-4B.$-\frac{81}{16}$C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.對(duì)于①“很可能發(fā)生的”,②“一定發(fā)生的”,③“可能發(fā)生的”,④“不可能發(fā)生的”,⑤“不太可能發(fā)生的”這5種生活現(xiàn)象,發(fā)生的概率由大到小排列為(填序號(hào))②①③⑤④.

查看答案和解析>>

同步練習(xí)冊(cè)答案