定義在R上的函數(shù)y=f(x)在(-∞,2)上是增函數(shù),且y=f(x+2)為偶函數(shù),若f(a)≥f(4),則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):奇偶性與單調(diào)性的綜合
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)f(x+2)為偶函數(shù)得到函數(shù)關(guān)于x=2對(duì)稱,進(jìn)而分別討論當(dāng)a≥2和a<2時(shí),即可求出不等式f(a)≥f(4)的解集.
解答: 解:∵f(x+2)為偶函數(shù),∴f(-x+2)=f(x+2),
即函數(shù)f(x)關(guān)于x=2對(duì)稱,
∵f(x)在(-∞,2)上是增函數(shù),
∴f(x)在(2,+∞)上單調(diào)遞減,
當(dāng)a≥2時(shí),由f(a)≥f(4),得則2≤a≤4,
當(dāng)a<2時(shí),由f(a)≥f(4)=f(0),此時(shí)0≤a<2,
綜上0≤a≤4,
則故a取值范圍是[0,4],
故答案為:[0,4]
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性和奇偶性的綜合運(yùn)用,根據(jù)條件得到函數(shù)f(x)的對(duì)稱性是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)數(shù)列{an}的首項(xiàng)a1=1,和遞推關(guān)系an=2an-1+1,探求其通項(xiàng)公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}前n項(xiàng)和Sn=2n2+3n+1,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)由“若a,b,c∈R,則(ab)c=a(bc)”類比“若
a
b
,
c
為三個(gè)向量則(
a
b
)•
c
=
a
•(
b
c
)”;
(2)在數(shù)列{an}中,a1=0,an+1=2an+2猜想an=2n-2;
(3)在平面內(nèi)“三角形的兩邊之和大于第三邊”類比在空間中“四面體的任意三個(gè)面的面積之和大于第四個(gè)面的面積;
(4)
-2
-3
1
x
dx=ln
2
3

上述四個(gè)推理中,得出的結(jié)論正確的是
 
.(寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于任意正整數(shù),定義“n的雙階乘n!!”如下:對(duì)于n是偶數(shù)時(shí),n!!=n•(n-2)•(n-4)…6×4×2;對(duì)于n是奇數(shù)時(shí),n!!=n•(n-2)•(n-4)…5×3×1.現(xiàn)有如下四個(gè)命題:
①(2013!!)•(2014!!)=2014!;
②2014!!=21007•1007!;
③2014!!的個(gè)位數(shù)是0;
④2015!!的個(gè)位數(shù)不是5.
正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P(x,y)是曲線C:x2+y2+4x+3=0上任意一點(diǎn),則
y
x
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列敘述錯(cuò)誤的是( 。
A、頻率是隨機(jī)的,在試驗(yàn)前不能確定,隨著試驗(yàn)次數(shù)的增加,頻率一般會(huì)越來(lái)越接近概率
B、互斥事件不一定是對(duì)立事件,但是對(duì)立事件一定是互斥事件
C、若隨機(jī)事件A發(fā)生的概率為p(A),則0≤p(A)≤1
D、某種彩票(有足夠多)中獎(jiǎng)概率為
1
1000
,有人買了1000張彩票但也不一定中獎(jiǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角2α的終邊在x軸的上方,那么α是(  )
A、第一象限角
B、第一、二象限角
C、第一、三象限角
D、第一、四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“x>0且y<0”是“xy<0”的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案