已知tanα=2,求下列各式的值
(1)
sinα+cosα
2sinα-cosα

(2)sin2α+sinαcosα+2cos2α
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:(1)原式分子分母除以cosα,利用同角三角函數(shù)間基本關(guān)系化簡(jiǎn),將tanα的值代入計(jì)算即可求出值;
(2)原式分母看做“1”,分子分母除以cos2α,利用同角三角函數(shù)間基本關(guān)系化簡(jiǎn),將tanα的值代入計(jì)算即可求出值.
解答: 解:(1)∵tanα=2,
∴原式=
tanα+1
2tanα-1
=
2+1
4-1
=1;
(2)∵tanα=2,
∴原式=
sin2α+sinαcosα+2cos2α
sin2α+cos2α
=
tan2α+tanα+2
tan2α+1
=
4+2+2
4+1
=
8
5
點(diǎn)評(píng):此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

隨機(jī)變量ξ服從正態(tài)分布N(0,σ2),且P(-2<ξ≤2)=0.6,則P(ξ>2)等于( 。
A、0.1B、0.2
C、0.3D、0.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:函數(shù)y=logm(6-mx)在[1,2]上單調(diào)遞減.
(1)求實(shí)數(shù)m的取值范圍;
(2)命題q:方程x2-2x+m+1=0在(0,+∞)內(nèi)有一個(gè)零點(diǎn).若p或q為真,p且q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,函數(shù)f(x)=
1
3
a2x3-ax2+
2
3
,x∈R.
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)在點(diǎn)(1,f(1)的切線方程;
(Ⅱ)求函數(shù)f(x)在[-1,1]的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>1,f(x)=(x2+ax+1)•e1-x,g(x)=
2a-1+(2a-1)x-x2
x+1
.若對(duì)于任意的x1,x2∈[0,1],使得|f(x1)-g(x2)|<1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,橢圓C的參數(shù)方程為
x=acosθ
y=bsinθ
(φ為參數(shù),a>b>0).在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l與圓O的極坐標(biāo)方程分別為ρsin(θ+
π
4
)=
2
2
m(m為非零常數(shù))與ρ=b.若直線l經(jīng)過(guò)橢圓C的焦點(diǎn),且與圓O相切,則橢圓C的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題p:函數(shù)f(x)=x3-ax-1在區(qū)間[-1,1]上單調(diào)遞減;命題q:函數(shù)y=x2+ax+1的最小值不大于0.如果命題p或q為真命題,p且q為假命題,求實(shí)數(shù)a的取值范圍是多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列的第一項(xiàng)為lg1000,第三項(xiàng)為lg(1000•cos260°).
(1)求通項(xiàng)公式;
(2)該數(shù)列的前多少項(xiàng)和最大?(參考數(shù)據(jù):lg≈0.301,
6301
602
≈10.47,
3000
301
≈9.96)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}滿足a1=1,a2=1,a3=2,若
an
an-2
=
an-3
an-1
(n∈N*,n≥4),則a5=
 
,數(shù)列{an}的前10項(xiàng)和S10=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案