18.已知f(n)=1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$(n∈N*),經(jīng)計(jì)算得f(4)>2,f(8)>$\frac{5}{2}$,f(16)>3,f(32)>$\frac{7}{2}$,則可以歸納出一般結(jié)論:當(dāng)n≥2時(shí),有$f({2^n})>\frac{n+2}{2}$(n∈N*).

分析 由題意f(4)>2,可化為f(22)>$\frac{2+2}{2}$,f(8)>$\frac{5}{2}$,可化為f(23)>$\frac{3+2}{2}$,即可得出結(jié)論.

解答 解:由題意f(4)>2,可化為f(22)>$\frac{2+2}{2}$,
f(8)>$\frac{5}{2}$,可化為f(23)>$\frac{3+2}{2}$,

以此類推,可得$f({2^n})>\frac{n+2}{2}$(n∈N*).
故答案為:$f({2^n})>\frac{n+2}{2}$(n∈N*).

點(diǎn)評(píng) 本題考查歸納推理,把已知的式子變形找規(guī)律是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.己知函數(shù)f(x)=xlnx.
(1)求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)對(duì)?x≥1,f(x)≤m(x2-1)成立,求實(shí)數(shù)m的最小值;
(3)證明:1n$\root{4}{2n+1}$$<\sum_{i=1}^{n}$$\frac{i}{4{i}^{2}-1}$.(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=\sqrt{-{x^2}+4x-3}$的定義域?yàn)镸.
(1)求f(x)的定義域M;
(2)求當(dāng)x∈M時(shí),求函數(shù)g(x)=4x-a•2x+1(a為常數(shù),且a∈R)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某多面體的三視圖,則該多面體的各面中,面積最大的是( 。
A.8B.$4\sqrt{5}$C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a=log3650.99、b=1.01365、c=0.99365,則a、b、c的大小關(guān)系為( 。
A.a<c<bB.b<a<cC.a<b<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在等比數(shù)列{an}中,a1=3,a6=6,則a16等于( 。
A.6B.12C.24D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,在正方體ABCD-A1B1C1D1中,E為A1C1的中點(diǎn),則異面直線CE與BD所成的角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖所示,程序框圖(算法流程圖)的輸出結(jié)果為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若一個(gè)底面是正三角形的三棱柱的正視圖如圖所示,則體積等于( 。
A.4$\sqrt{3}$B.$\frac{4}{3}$$\sqrt{3}$C.4D.2$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案