(1)已知復(fù)數(shù)z=1-2i,求
z+1
z-2
的值;
(2)已知x是復(fù)數(shù),解關(guān)于x的方程x2-8x+18=0;
(3)已知2-3i是關(guān)于x的方程x2+mx+n=0的一個(gè)根,求實(shí)數(shù)m,n的值.
考點(diǎn):復(fù)數(shù)代數(shù)形式的混合運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:(1)利用復(fù)數(shù)的運(yùn)算法則即可得出;
(2)配方得(x-4)2+2=0,可得(x-4)2=2i2,兩邊開方即可得出;
(3)把2-3i代入方程x2+mx+n=0,根據(jù)復(fù)數(shù)相等即可得出.
解答: 解:(1)∵z=1-2i,∴
z+1
z-2
=
2-2i
-1-2i
=
-2+2i
1+2i
=
(-2+2i)(1-2i)
(1+2i)(1-2i)
=
2+6i
5
=
2
5
+
6
5
i

(2)配方得(x-4)2+2=0,
∴(x-4)2=2i2,
∴x-4=±
2
i
∴方程的根為 x1=4-
2
i,x2=4+
2
 i.
(3)由已知有 (2-3i)2+m(2-3i)+n=0 整理得(2m+n-5)+(-3m-12)i=0,
∴2m+n-5=0且-3m-12=0,
解得m=-4,n=13.
點(diǎn)評:本題考查了復(fù)數(shù)的運(yùn)算法則及其相等、解有虛根的實(shí)系數(shù)的一元二次方程,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式ax2-bx+1≥0的解集是[-1,2],則不等式x2-bx+a<0的解集是( 。
A、(-
1
2
,1)
B、(-∞,-1)∪(
1
2
,+∞)
C、(-∞,-
1
2
)∪(1,+∞)
D、(-1,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知sin(2π-A)=
2
cos(
2
-B)
,
3
cosA =-
2
cos(π-B)

(1)求cosA的值.
(2)求A、B、C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M(3,1),直線ax-y+4=0及圓(x-1)2+(y-2)2=4.
(1)求過M點(diǎn)的圓的切線方程;
(2)若直線ax-y+4=0與圓相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商場為迎接元旦,特舉行酬賓抽獎(jiǎng)活動(dòng),規(guī)則如下:在一個(gè)不透明的布袋里放有紅球3個(gè),藍(lán)球3個(gè),隨機(jī)的抽取3個(gè)球,若抽得紅球的個(gè)數(shù)是3、2、1則分別為一、二、三等獎(jiǎng),分別獎(jiǎng)勵(lì)購物券50元、30元、20元;若紅球個(gè)數(shù)為0(即抽得3個(gè)藍(lán)球),為不中獎(jiǎng).
(Ⅰ)請你計(jì)算一下此次活動(dòng)的中獎(jiǎng)率;
(Ⅱ)若商家提供10000次這樣的抽獎(jiǎng)機(jī)會(huì),則商家需準(zhǔn)備總共多少面值的購物券.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若把函數(shù)y=sinωx的圖象向左平移
π
3
個(gè)單位長度后,與函數(shù)y=sin(
π
2
+ωx)
的圖象重合,則ω的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

π
2
-
π
2
sinxdx
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(cos
x
2
)=3cosx+2,則f(sin
π
8
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

所有與角α終邊相同的角,連同角α在內(nèi),可構(gòu)成的一個(gè)集合S是( 。
A、{β|β=α+k•180°,k∈Z}
B、{β|β=α+k•360°,k∈Z}
C、{β|β=α+k•180°,k∈R}
D、{β|β=α+k•360°,k∈R}

查看答案和解析>>

同步練習(xí)冊答案