如圖所示是一個幾何體的三視圖,若該幾何體的體積為
1
2
,則主視圖中三角形的高x的值為( 。
A、
1
2
B、
3
4
C、1
D、
3
2
考點:由三視圖求面積、體積
專題:計算題,空間位置關(guān)系與距離
分析:幾何體為四棱錐與三棱錐的組合體,且三棱錐與四棱錐的高都為x,判斷幾何體的底面形狀,利用三視圖的數(shù)據(jù)求出底面面積,代入棱錐的體積公式,根據(jù)幾何體的體積為
1
2
,求出x.
解答: 解:由三視圖知:幾何體為四棱錐與三棱錐的組合體,且三棱錐與四棱錐的高都為x,
底面分別是邊長為1的正方形與直角邊長為1的等腰直角三角形,
∴幾何體的體積V=
1
3
×(12+
1
2
×1×1)×x=
1
2

∴x=1.
故選:C.
點評:本題考查了由三視圖求幾何體的體積,解答此類問題的關(guān)鍵是判斷幾何體的形狀及數(shù)據(jù)所對應(yīng)的幾何量.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,2)
,
b
=(3,4)
,則
a
b
上的投影=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)是最小正周期為2π的偶函數(shù),f′(x)是f(x)的導(dǎo)函數(shù),當(dāng)x∈[0,π]時;0<f(x)<2;當(dāng)x∈(0,π)且x≠
π
2
時,(x-
π
2
)f′(x)>0
,則函數(shù)y=f(x)-|tanx|在區(qū)間[-2π,2π]上的零點個數(shù)為( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A、6
B、2
3
C、3
D、3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若某幾何體的三視圖(單位:cm)如圖所示,其中左視圖是一個邊長為2的正三角形,則這個幾何體的體積是( 。
A、2cm2
B、
3
cm3
C、3
3
cm3
D、3cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“m>n>1”是“l(fā)ogm2<logn2”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=alnx-bx2,其圖象在點P(2,f(2))處切線的斜率為-3.
(1)求函數(shù)f(x)的單調(diào)區(qū)間(用只含有b的式子表示);
(2)當(dāng)a=2時,令g(x)=f(x)-kx,設(shè)x1,x2(x1<x2)是函數(shù)g(x)=0的兩個根,x0是x1,x2的等差中項,求證:g′(x0)<0(g′(x)為函數(shù)g(x)的導(dǎo)函數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓5x2+9y2=45,橢圓的右焦點為F,
(1)求過點F且斜率為1的直線被橢圓截得的弦長;
(2)判斷點A(1,1)與橢圓的位置關(guān)系,并求以A為中點橢圓的弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=-x2+ax-b,a、b∈[0,4],a、b∈R,則f(1)>0的概率為
 

查看答案和解析>>

同步練習(xí)冊答案