將參數(shù)方程
x=2+sin2θ
y=sin2θ
(θ為參數(shù))化為普通方程為
 
考點:參數(shù)方程化成普通方程
專題:坐標系和參數(shù)方程
分析:把y=sin2θ代入x=2+sin2θ可得x=2+y(0≤y≤1).
解答: 解:由參數(shù)方程
x=2+sin2θ
y=sin2θ
(θ為參數(shù)),
把y=sin2θ代入x=2+sin2θ得x=2+y(0≤y≤1).即y=x-2(2≤x≤3).
故答案為:y=x-2(2≤x≤3).
點評:本題考查了參數(shù)方程化為普通方程的方法,考查了三角函數(shù)的單調性和有界性,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=log2(2x-x2).且關于x的方程2f(x)=kx+1有兩個不相等的實根x1、x2
(1)求f(x)的定義域;
(2)求k的取值范圍M;
(3)是否存在實數(shù)n,使得不等式n2+n+1>2|x1-x2|對任意的k∈M恒成立?若存在,求出n的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l過雙曲線C:3x2-y2=9的右頂點,且與雙曲線C的一條漸近線平行.若拋物線x2=2py(p>0)的焦點恰好在直線l上,則p=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(
x+1
x
)=x4+
1
x4
,x∈R,則函數(shù)f(x)的遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

F1、F2為橢圓的兩個焦點,過F2的直線交橢圓于A、B兩點,AF1⊥AB,且|AF1|=|AB|,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知棱長為1的正方體ABCD-A1B1C1D1中,P,Q是面對角線A1C1上的兩個不同動點.給出以下判斷:
①存在P,Q兩點,使BP⊥DQ;
②存在P,Q兩點,使BP∥DQ;
③若|PQ|=1,則四面體BDPQ的體積一定是定值;
④若|PQ|=1,則四面體BDPQ的表面積是定值.
⑤若|PQ|=1,則四面體BDPQ在該正方體六個面上的正投影的面積的和為定值.
其中真命題是
 
.(將正確命題的序號全填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)已知函數(shù)f(x)的定義域為{1,2,3},值域為集合{1,2,3,4}的非空真子集,設點A(1,f(1)),B(2,f(2)),C(3,f(3)),△ABC的外接圓圓心為M,且
MA
+
MC
MB
(λ∈R),滿足條件的函數(shù)f(x)有
 
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知棱長為1的正方體ABCD-A1B1C1D1中,P,Q是面對角線A1C1上的兩個不同動點.給出以下判斷:
①存在P,Q兩點,使BP⊥DQ;
②存在P,Q兩點,使BP,DQ與直線B1C1都成45°的角;
③若|PQ|=1,則四面體BDPQ的體積一定是定值;
④若|PQ|=1,則四面體BDPQ的表面積是定值.
⑤若|PQ|=1,則四面體BDPQ在該正方體六個面上的正投影的面積的和為定值.
其中真命題是
 
.(將正確命題的序號全填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1F2是橢圓C1
x2
9
+
y2
5
=1與雙曲線C2的公共焦點,點P是曲線C1與C2的一個公共點,且|
OP
|=
61
3
(其中點O為坐標原點),則雙曲線C2離心率為(  )
A、
2
B、
3
2
C、2
D、
2
3
3

查看答案和解析>>

同步練習冊答案