設(shè)變量x,y滿足約束條件
x≥-1
y≥x
3x+2y≤10
,則z=2x+y的最大值為( 。
A、-3
B、
9
2
C、6
D、10
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,由圖象可知當(dāng)直線y=-2x+z經(jīng)過(guò)點(diǎn)A時(shí),直線y=-2x+z的截距最大,
此時(shí)z最大,
y=x
3x+2y=10
,解得
x=2
y=2

即A(2,2),
此時(shí)tmax=2×2+2=6,
故選:C.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決此類問(wèn)題的基本方法,利用z的幾何意義是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)三角形的三邊長(zhǎng)分別是5,5,6,一只螞蟻在其內(nèi)部爬行,若不考慮螞蟻的大小,則某時(shí)刻該螞蟻距離三角形的三個(gè)頂點(diǎn)的距離均超過(guò)2的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,定義兩點(diǎn)P(x1,y1),Q(x2,y2)之間的“直角距離”為d(P,Q)=|x1-x2|+|y1-y2|.現(xiàn)有下列命題:
①若P,Q是x軸上兩點(diǎn),則d(P,Q)=|x1-x2|;
②已知P(1,3),Q(sin2a,cos2a)(a∈R),則d(P,Q)為定值;
③原點(diǎn)O到直線x-y+1=0上任一點(diǎn)P的直角距離d(O,P)的最小值為
2
2
;
④設(shè)A(x,y)且x∈Z,y∈Z,若點(diǎn)A是在過(guò)P(1,3)與Q(5,7)的直線上,且點(diǎn)A到點(diǎn)P與Q的“直角距離”之和等于8,那么滿足條件的點(diǎn)A只有5個(gè).
其中的真命題是
 
.(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=log3
1
2
,b=log0.62,c=
33
,則(  )
A、b<a<c
B、a<b<c
C、c<a<b
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x、y滿足不等式
x+y-3≤0
x-y+3≥0
y≥-1
,則z=3x+y的最大值為(  )
A、11B、-11
C、13D、-13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的T為(  )
A、26B、57C、63D、120

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)在x0處可導(dǎo),a為常數(shù),則
lim
△x→0
f(x0+a△x)-f(x0-a△x)
△x
=(  )
A、f′(x0
B、2af′(x0
C、af′(x0
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線x-2y+2=0經(jīng)過(guò)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左頂點(diǎn)A和上頂點(diǎn)D,橢圓C的右頂點(diǎn)為B,點(diǎn)S是橢圓上位于x軸上方的動(dòng)點(diǎn),直線AS,BS與直線l:x=4分別交于M,N兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)(。┰O(shè)直線AS,BS的斜率分別為k1,k2,求證k1•k2為定值;
(ⅱ)求線段MN的長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱錐P-ABCD的底面是平行四邊形,AD=2AB,∠ABC=60°,PA⊥面ABCD,且PA=AD.若E為PC中點(diǎn),F(xiàn)為線段PD上的點(diǎn),且PF=2FD.
(1)求證:BE∥平面ACF;
(2)求PC與平面PAD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案