已知在△ABC中,點(diǎn)D在BC邊上,且
CD
=2
DB
=r
AB
+s
AC
,則2r+s的值是( 。
A、0
B、
4
3
C、2
D、
2
3
考點(diǎn):平面向量的基本定理及其意義
專題:平面向量及應(yīng)用
分析:如圖所示,利用向量的三角形法則、數(shù)乘運(yùn)算和平面向量的基本定理即可得出.
解答: 解:如圖所示,
CD
=
AD
-
AC
DB
=
AB
-
AD
,
CD
=2
DB
,
AD
-
AC
=2(
AB
-
AD
)
,化為
AD
=
2
3
AB
+
1
3
AC

CD
=
2
3
AB
+
1
3
AC
-
AC
=
2
3
AB
-
2
3
AC

又∵
CD
=r
AB
+s
AC
,
∴r=
2
3
,s=-
2
3

∴2r+s=
2
3
-
2
3
=
2
3

故選:D.
點(diǎn)評(píng):本題考查了向量的三角形法則、數(shù)乘運(yùn)算和平面向量的基本定理,考查了推理能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sin
x
2
的最小正周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程x3-3x2+1=0的實(shí)根的個(gè)數(shù)為(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿足a1=
1
2
,an+1=1-
1
an
,則a2014等于(  )
A、
1
2
B、-1
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)奇函數(shù)f(x)定義在(-∞,0)∪(0,+∞)上,f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式
3f(x)-2f(-x)
5x
<0的解集為(  )
A、(-1,0)∪(1,+∞)
B、(-∞,-1)∪(0,1)
C、(-∞,-1)∪(1,+∞)
D、(-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若α是鈍角,則θ=kπ+α,k∈Z是(  )
A、第二象限角
B、第三象限角
C、第二象限角或第三象限角
D、第二象限角或第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知l,m,n為互不重合的三條直線,平面α⊥平面β,α∩β=l,m?α,n?β,那么m⊥n是m⊥β的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=x3-ax2+4在區(qū)間(0,2)內(nèi)是單調(diào)遞減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A、a≥3B、a=3
C、a≤3D、0<a<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有5個(gè)不同的球,5個(gè)不同的盒子,現(xiàn)要把球全部放入盒內(nèi).
(1)共有幾種放法?
(2)恰有一個(gè)盒子不放球,共有幾種放法?
(3)恰有兩個(gè)盒子不放球,共有幾種放法?

查看答案和解析>>

同步練習(xí)冊(cè)答案