分析 (1)由f(x)=0進(jìn)行求解即可;
(2)根據(jù)函數(shù)奇偶性的定義進(jìn)行判斷即可判斷函數(shù)f(x)的奇偶性;
(3)根據(jù)函數(shù)單調(diào)性的定義結(jié)合指數(shù)函數(shù)單調(diào)性的性質(zhì)即可得到結(jié)論.
解答 解:(1)由f(x)=${a}^{x}-\frac{1}{{a}^{x}}$=0得ax=$\frac{1}{{a}^{x}}$,即(ax)2=1,則ax=1,解得x=0,
即函數(shù)f(x)有零點(diǎn),其中零點(diǎn)為0;
(2)函數(shù)的定義域?yàn)椋?∞,+∞),
則f(x)=ax-$\frac{1}{{a}^{x}}$=ax-a-x,
則f(-x)=a-x-ax=-(ax-a-x)=-f(x),
則函數(shù)f(x)為奇函數(shù);
(3)a>1時(shí),函數(shù)f(x)為增函數(shù),當(dāng)0<a<1時(shí),函數(shù)f(x)為減函數(shù).
證明:設(shè)x1<x2,
f(x1)-f(x2)=${a}^{{x}_{1}}$-$\frac{1}{{a}^{{x}_{1}}}$+-${a}^{{x}_{2}}$+$\frac{1}{{a}^{{x}_{2}}}$=(${a}^{{x}_{1}}$-${a}^{{x}_{2}}$)+$\frac{1}{{a}^{{x}_{2}}}$-$\frac{1}{{a}^{{x}_{1}}}$=(${a}^{{x}_{1}}$-${a}^{{x}_{2}}$)+$\frac{{a}^{{x}_{1}}-{a}^{{x}_{2}}}{{a}^{{x}_{1}}•{a}^{{x}_{2}}}$
=(${a}^{{x}_{1}}$-${a}^{{x}_{2}}$)(1+$\frac{1}{{a}^{{x}_{1}}•{a}^{{x}_{2}}}$),
若a>1,∵x1<x2,
∴${a}^{{x}_{1}}$<${a}^{{x}_{2}}$,即${a}^{{x}_{1}}$-${a}^{{x}_{2}}$<0,1+$\frac{1}{{a}^{{x}_{1}}•{a}^{{x}_{2}}}$>0,
∴f(x1)-f(x2)<0,
即f(x1)<f(x2),
故f(x)在(-∞,+∞)上單調(diào)遞增;
若0<a<1,∵x1<x2,
∴${a}^{{x}_{1}}$>${a}^{{x}_{2}}$,即${a}^{{x}_{1}}$-${a}^{{x}_{2}}$>0,1+$\frac{1}{{a}^{{x}_{1}}•{a}^{{x}_{2}}}$>0,
∴f(x1)-f(x2)>0,
即f(x1)>f(x2),
故f(x)在(-∞,+∞)上單調(diào)遞減.
即a>1時(shí),函數(shù)f(x)為增函數(shù),當(dāng)0<a<1時(shí),函數(shù)f(x)為減函數(shù).
點(diǎn)評 本題主要考查函數(shù)零點(diǎn)的求解,函數(shù)奇偶性和單調(diào)性的判斷和證明,利用函數(shù)奇偶性和單調(diào)性的定義是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,-2$\sqrt{5}$+3) | B. | (-∞,-2$\sqrt{5}$+3) | C. | (-$\frac{1}{2}$,4-$\sqrt{17}$) | D. | (-∞,4-$\sqrt{17}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com