【題目】已知函數(shù).
(1)當(dāng)時,討論的單調(diào)性;
(2)若對任意的,恒有成立,求實數(shù)的取值范圍.
【答案】(1)當(dāng)時,遞減區(qū)間為,當(dāng)時,遞減區(qū)間為,遞增區(qū)間為,當(dāng)時,遞減區(qū)間為,遞增區(qū)間為;(2).
【解析】
試題分析:(1)首先對函數(shù)求導(dǎo),然后求得導(dǎo)數(shù)等于零的方程的根,從而根據(jù)根的大小分、、;(2)首先結(jié)合(1)將問題轉(zhuǎn)化為,然后根據(jù)函數(shù)的單調(diào)性求得的最小值,由此求得實數(shù)的取值范圍.
試題解析:(1),令,得,,
當(dāng)時,,函數(shù)在定義域單調(diào)遞減;
當(dāng)時,在區(qū)間,上,單調(diào)遞減,
在區(qū)間上,單調(diào)遞增;
當(dāng)時,在區(qū)間,上,單調(diào)遞減,
在區(qū)間上,單調(diào)遞增.
故時,遞減區(qū)間為;
時,遞減區(qū)間為,,遞增區(qū)間為;
時,遞減區(qū)間為,,遞增區(qū)間為.………………6分
(2)由(1)知當(dāng)時,函數(shù)在區(qū)間單調(diào)遞減;
所以當(dāng)時,,,
問題等價于:對任意的,
恒有成立,即,
因為,∴.
所以,實數(shù)的取值范圍是.………………12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動點(diǎn)在拋物線上,過點(diǎn)作垂直于軸,垂足為,設(shè).
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)點(diǎn),過點(diǎn)的直線交軌跡于兩點(diǎn),直線的斜率分別為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(必須列式,不能只寫答案,答案用數(shù)字表示)有4個不同的球,四個不同的盒子,把球全部放入盒內(nèi).
(1)求共有多少種放法;
(2)求恰有一個盒子不放球,有多少種放法;
(3)求恰有兩個盒內(nèi)不放球,有多少種放法;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)的導(dǎo)函數(shù)為,且滿足,,當(dāng)時有恒成立,若非負(fù)實數(shù)、滿足,,則的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)各項均為正數(shù)的數(shù)列滿足(為常數(shù)),其中為數(shù)列的前項和.
(1)若,,求證:是等差數(shù)列;
(2)若,,求數(shù)列的通項公式;
(3)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,側(cè)面PAD⊥底面ABCD,若點(diǎn)E,F分別是PC,BD的中點(diǎn)。
(1)求證:EF∥平面PAD;
(2)求證:平面PAD⊥平面PCD
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某海域有兩個島嶼,島在島正東4海里處,經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發(fā)出過魚群。以所在直線為軸,的垂直平分線為軸建立平面直角坐標(biāo)系.
(1)求曲線的標(biāo)準(zhǔn)方程;
(2)某日,研究人員在兩島同時用聲納探測儀發(fā)出不同頻率的探測信號(傳播速度相同),兩島收到魚群在處反射信號的時間比為,問你能否確定處的位置(即點(diǎn)的坐標(biāo))?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過點(diǎn),圓的圓心在圓的內(nèi)部,且直線被圓所截得的弦長為.點(diǎn)為圓上異于的任意一點(diǎn),直線與軸交于點(diǎn),直線與軸交于點(diǎn).
(1)求圓的方程;
(2)求證: 為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com