已知函數(shù)f(x)=loga(2x+b-1)(a>0且a≠1)的部分圖象如圖所示,則滿足a,b關(guān)系是( 。
A、0<
1
a
<b<1
B、0<b<
1
a
<1
C、0<
1
b
<a<1
D、0<
1
a
1
b
<1
考點(diǎn):對數(shù)函數(shù)的圖像與性質(zhì),函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用對數(shù)函數(shù)和函數(shù)圖象平移的方法列出關(guān)于a,b的不等關(guān)系是解決本題的關(guān)鍵.利用好圖形中的標(biāo)注的(0,-1)點(diǎn).利用復(fù)合函數(shù)思想進(jìn)行單調(diào)性的判斷,進(jìn)而判斷出底數(shù)與1的大小關(guān)系.
解答: 解:∵函數(shù)f(x)=loga(2x+b-1)是增函數(shù)且隨著x增大,2x+b-1增大,f(x)也增大.
∴a>1,∴0<
1
a
<1,
∵當(dāng)x=0時(shí),f(0)=logab<0,
∴0<b<1.
又∵f(0)=logab>-1=loga
1
a
,
∴b>
1
a

∴0<
1
a
<b<1.
故選:A.
點(diǎn)評:本題考查對數(shù)函數(shù)的圖象性質(zhì),考查學(xué)生的識(shí)圖能力.考查學(xué)生的數(shù)形結(jié)合能力和等價(jià)轉(zhuǎn)化思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

從數(shù)字0,1,2,3,…,9中,按由小到大的順序取出a1,a2,a3,且a2-a1≥2,a3-a2≥2,則不同的取法有(  )
A、20種B、35種
C、56種D、60種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式a+2b+3>(
a
+2
b
)λ對任意正數(shù)a,b恒成立,則實(shí)數(shù)λ的取值范圍為(  )
A、(-∞,3)
B、(-∞,2)
C、(-∞,1)
D、(-∞,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二元函數(shù)f(x,θ)=
xcosθ
x2+xsinθ+2
(x∈R,θ∈R),則f(x,θ)的最大值和最小值分別為( 。
A、
7
7
,-
7
7
B、
7
,-
7
7
C、2
2
,-2
2
D、2
2
,-
2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用紅、黃、綠、藍(lán)四種不同顏色給一個(gè)正方體的六個(gè)面涂色,要求相鄰兩個(gè)面涂不同的顏色,則共有涂色方法(涂色后,任意翻轉(zhuǎn)正方體,能使正方體各面顏色一致,我們認(rèn)為是同一種涂色方法)( 。
A、10種B、12種
C、24種D、48種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上函數(shù)f(x)=
x+b
x2+ax+1
為奇函數(shù).
(Ⅰ)求a+b的值;
(Ⅱ)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如下表:
廣告費(fèi)用x(萬元) 1 2 3 4 5
銷售額y(萬元) 10 12 15 18 20
(1)利用所給數(shù)據(jù)求廣告費(fèi)用x與銷售額y之間的線性回歸方程y=a+bx;
(2)預(yù)計(jì)在今后的銷售中,銷售額與廣告費(fèi)用還服從(1)中的關(guān)系,如果廣告費(fèi)用為6萬元,請預(yù)測銷售額為多少萬元?
附:其中b=
x1y1+x2y2+…+xnyn-n
.
x
.
y
x12+x22+…+xn2-n(
.
x
)2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-1-lnx(a∈R).
(1)當(dāng)a=1時(shí),求曲線在點(diǎn)(1,0)處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[
1
2
,2]上的最小值;
(3)證明不等式:2•
4
3
8
7
2n
2n-1
<e 
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,E點(diǎn)為DD1中點(diǎn).
(1)求證:平面ACE⊥平面BDD1
(2)求證:BD1∥平面ACE.
(3)求二面角E-AC-D的正切值.

查看答案和解析>>

同步練習(xí)冊答案