用紅、黃、綠、藍(lán)四種不同顏色給一個正方體的六個面涂色,要求相鄰兩個面涂不同的顏色,則共有涂色方法(涂色后,任意翻轉(zhuǎn)正方體,能使正方體各面顏色一致,我們認(rèn)為是同一種涂色方法)( 。
A、10種B、12種
C、24種D、48種
考點(diǎn):排列、組合及簡單計數(shù)問題
專題:應(yīng)用題,排列組合
分析:由于涂色過程中,要保證滿足用四種顏色,且相鄰的面不同色,對于正方體的三對面來說,必然有三對同色或兩對同色,一對不同色,而且三對面具有“地位對等性”.
解答: 解:由于涂色過程中,要保證滿足用四種顏色,且相鄰的面不同色,對于正方體的三對面來說,必然有三對同色或兩對同色,一對不同色,而且三對面具有“地位對等性”,因此,
三對同色:
C
3
4
=4種不同的涂法;
兩對同色,一對不同色:只需從四種顏色中選擇2種涂在其中兩對面上,剩下的兩種顏色涂在另外兩個面即可.因此共有
C
2
4
=6種不同的涂法.
故共有4+6=10種不同的涂法.
故選:A.
點(diǎn)評:本題考查了排列,組合和簡單的計數(shù)問題,解答該題的關(guān)鍵是對題目中注明的涂色后,任意翻轉(zhuǎn)正方體,能使正方體各面顏色一致,我們認(rèn)為是同一種涂色方法的理解,這樣使看似復(fù)雜的問題變?yōu)楹唵蔚倪x色(即組合)問題,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|
x
1-x
<0|,B={x|lgx≥0},則集合{x|x≤1}等于( 。
A、A∩B
B、A∪B
C、∁U(A∩B)
D、∁U(A∩B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i為復(fù)數(shù)單位,若
1+ai
i
=1+bi(a,b∈R),則a+b=( 。
A、2B、1C、-1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,點(diǎn)列{An}滿足:|
OA1
|=1,|
OAi+1
|=2|
OAi
|+1,Ai均在坐標(biāo)軸上(i∈N*),則向量
OA1
+
OA2
+…+
OA2014
=( 。
A、(22014-1,0)
B、(22016-1,22015-1)
C、(
22014-1
5
,
3(22014-1)
5
D、(
22016-1
5
,
22015-3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
1
3x-1
+
1
a
是奇函數(shù),則a的值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(2x+b-1)(a>0且a≠1)的部分圖象如圖所示,則滿足a,b關(guān)系是( 。
A、0<
1
a
<b<1
B、0<b<
1
a
<1
C、0<
1
b
<a<1
D、0<
1
a
1
b
<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1-2cos2
ωx
2
,1),
b
=(-1,cos(ωx+
π
3
)),ω>0,點(diǎn)A、B為函數(shù)f(x)=
a
b
的相鄰兩個零點(diǎn),|AB|=π.
(Ⅰ) 求ω的值;
(Ⅱ) 若f(x)=
3
3
,x∈(0,
π
2
),求sinx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知長方形ABCD中,AB=2,AD=1,M為CD的中點(diǎn).將△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求證:AD⊥BM;
(2)若點(diǎn)E是線段BD的中點(diǎn),求二面角E-AM-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某大型企業(yè)人力資源部為研究企業(yè)員工工作積極性和對待企業(yè)改革態(tài)度的關(guān)系,隨機(jī)抽取了189名員工進(jìn)行調(diào)查,所得數(shù)據(jù)如下表所示:
積極支持企業(yè)改革 不太贊成企業(yè)改革 合計
工作積極 54 40 94
工作一般 32 63 95
合計 86 103 189
對于人力資源部的研究項目,根據(jù)上述數(shù)據(jù)能有99.5%的把握說:員工“工作積極”與“積極支持企業(yè)改革”是有關(guān)的?K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.
分類變量X與Y有關(guān)系的可信程度對應(yīng)表:
P(K2≥k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

同步練習(xí)冊答案