分析 (1)設(shè)出直線方程,由直線和圓相切的條件:d=r,結(jié)合基本不等式,即可得到面積的最小值和此時(shí)直線的方程;
(2)討論直線的斜率不存在和存在,設(shè)出直線方程為y=kx+m,代入橢圓方程,運(yùn)用韋達(dá)定理和中點(diǎn)坐標(biāo)公式,結(jié)合判別式大于0,化簡(jiǎn)整理即可得到所求范圍.
解答 解:(1)設(shè)直線l的方程為$\frac{x}{a}$+$\frac{y}$=1(a,b>0),
由直線和圓x2+y2=4相切,可得$\frac{ab}{\sqrt{{a}^{2}+^{2}}}$=$\sqrt{2}$,
即有$\frac{1}{{a}^{2}}$+$\frac{1}{^{2}}$=$\frac{1}{2}$≥$\frac{2}{ab}$,即ab≥4,
當(dāng)且僅當(dāng)a=b=2時(shí),取得等號(hào).
則△AOB面積S=$\frac{1}{2}$ab的最小值為2;
此時(shí)直線的方程為x+y-2=0;
(2)若直線的斜率不存在,設(shè)為x=t,
由直線和圓相切可得,t=-$\sqrt{2}$或$\sqrt{2}$.
代入橢圓方程可得,y=±$\sqrt{2}$,
可得中點(diǎn)M坐標(biāo)為(-$\sqrt{2}$,0)或($\sqrt{2}$,0),|OM|=$\sqrt{2}$;
設(shè)直線l的方程為y=kx+m,代入橢圓方程可得,
(1+2k2)x2+4kmx+2m2-6=0,
△=16k2m2-4(1+2k2)(2m2-6)>0,
即為m2<3+6k2,
由直線和圓相切,可得$\frac{|m|}{\sqrt{1+{k}^{2}}}$=$\sqrt{2}$,
即為m2=2+2k2,由2+2k2<3+6k2,可得k∈R,
設(shè)P,Q的坐標(biāo)為(x1,y1),(x2,y2),
可得x1+x2=-$\frac{4km}{1+2{k}^{2}}$,中點(diǎn)M的坐標(biāo)為(-$\frac{2km}{1+2{k}^{2}}$,$\frac{m}{1+2{k}^{2}}$),
即有|OM|=$\sqrt{(-\frac{2km}{1+2{k}^{2}})^{2}+(\frac{m}{1+2{k}^{2}})^{2}}$=$\frac{\sqrt{(1+4{k}^{2})(2+2{k}^{2})}}{1+2{k}^{2}}$
設(shè)1+2k2=t(t≥1),則|OM|=$\frac{\sqrt{(2t-1)(t+1)}}{t}$=$\sqrt{2+\frac{1}{t}-\frac{1}{{t}^{2}}}$
=$\sqrt{-(\frac{1}{t}-\frac{1}{2})^{2}+\frac{9}{4}}$,由t≥1可得t=2取得最大值$\frac{3}{2}$,
t=1時(shí),取得最小值$\sqrt{2}$.
故|OM|的范圍是[$\sqrt{2}$,$\frac{3}{2}$].
點(diǎn)評(píng) 本題考查直線和圓相切的條件,直線和橢圓的位置關(guān)系,注意聯(lián)立直線方程和橢圓方程,運(yùn)用韋達(dá)定理和中點(diǎn)坐標(biāo)公式,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)是R上的增函數(shù) | B. | f(x)可能不存在單調(diào)的增區(qū)間 | ||
C. | f(x)不可能有單調(diào)減區(qū)間 | D. | f(x)一定有單調(diào)增區(qū)間 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-2] | B. | (-∞,-2)∪(2,+∞) | C. | (2,+∞) | D. | (-2,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 偶函數(shù) | B. | 奇函數(shù) | ||
C. | 既是奇函數(shù)又是偶函數(shù) | D. | 既不是奇函數(shù)又不是偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com