9.若函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是減函數(shù),且一個(gè)零點(diǎn)是2,則使得f(x)<0的x的取值范圍是( 。
A.(-∞,-2]B.(-∞,-2)∪(2,+∞)C.(2,+∞)D.(-2,2)

分析 根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系,將不等式進(jìn)行轉(zhuǎn)化即可得到結(jié)論.

解答 解:∵函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是減函數(shù),
∴函數(shù)f(x)在[0,+∞)上為增函數(shù),且f(-2)=-f(2)=0,
作出函數(shù)f(x)的草圖:
如圖:則不等式等價(jià)為f(x)<0的解為-2<x<2,
故不等式的解集為(-2,2).
故選:D.

點(diǎn)評(píng) 本題主要考查不等式的解集,利用函數(shù)奇偶性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)=ln($\sqrt{1+4{x}^{2}}$-2x)+3,則f(lg2)+f(lg$\frac{1}{2}$)=( 。
A.0B.-3C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知f(x)=ax2+(b-3)x+3,x∈[a2-2,a]是偶函數(shù),則a+b=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)y=log${\;}_{\frac{1}{4}}}$(x2-2mx+3)在區(qū)間(-∞,1)上是增函數(shù),則實(shí)數(shù)m的取值范圍是[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)增區(qū)間;
(Ⅲ)當(dāng)x∈[-$\frac{π}{12}$,$\frac{π}{2}$],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若$cos(\frac{π}{4}-θ)cos(\frac{π}{4}+θ)=\frac{{\sqrt{2}}}{6}$,則cos2θ=$\frac{{\sqrt{2}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.O為坐標(biāo)原點(diǎn),直線l與圓x2+y2=2相切.
(1)若直線l分別與x、y軸正半軸交于A、B兩點(diǎn),求△AOB面積的最小值及面積取得最小值時(shí)的直線l的方程.
(2)設(shè)直線l交橢圓$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1于P、Q兩點(diǎn),M為PQ的中點(diǎn),求|OM|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.△ABC中,cosB=$\frac{5}{13}$,cosC=$\frac{4}{5}$.(1)求sinA的值;(2)面積S△ABC=$\frac{33}{2}$,求BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)變量x與y線性相關(guān),且相關(guān)系數(shù)為0.875,設(shè)變量x1=10x,y1=10y,則變量y1與x1的相關(guān)系數(shù)為( 。
A.0.875B.0.125C.1D.不確定

查看答案和解析>>

同步練習(xí)冊(cè)答案