【題目】如圖,在平面直角坐標系中,過軸正方向上一點任作一直線,與拋物線相交于兩點,一條垂直于軸的直線分別與線段和直線交于點.

(1) ,求的值;

(2) 為線段的中點,求證: 直線與該拋物線有且僅有一個公共點.

(3) ,直線的斜率存在,且與該拋物線有且僅有一個公共點,試問是否一定為線段的中點? 說明理由.

【答案】(1) ;(2) 證明見解析;(3)是,理由見解析.

【解析】

(1)設(shè),,,則,聯(lián)立直線方程和拋物線方程,消去后利用韋達定理可得關(guān)于的方程,從而可求的值.

(2)設(shè),用表示直線的方程,聯(lián)立該直線的方程和拋物線的方程后可得該方程組有且只有一組解,故直線與拋物線相切.

(3)設(shè),利用(2)的結(jié)果可得切線的方程,求出的坐標和直線的方程后,聯(lián)立直線的方程和拋物線的方程,消去后利用韋達定理可求中點的橫坐標,可證它就是的橫坐標,從而一定為線段的中點.

(1) 設(shè),

,故,從而.

,故,解得,

舍去負值,得.

(2)由(1)得,,故,.

設(shè)上,且滿足,

故直線的方程為

.

,

,故方程組有唯一解,

故直線與該拋物線有且僅有一個公共點.

(3)設(shè),這里,

由(2)知過有且僅有一個公共點的斜率存在的直線必為.

,故,

,所以.

,故

這樣的中點.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】將數(shù)列中的所有項按第一行排3項,以下每一行比上一行多一項的規(guī)則排成如下數(shù)表:

……

記表中的第一列數(shù),,,,構(gòu)成數(shù)列.

1)設(shè),求m的值;

2)若,對于任何,都有,且.求數(shù)列的通項公式.

3)對于(2)中的數(shù)列,若上表中每一行的數(shù)按從左到右的順序均構(gòu)成公比為q)的等比數(shù)列,且,求上表中第k)行所有項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)2xx∈(0,1]

(1)a=-1時,求函數(shù)yf(x)的值域;

(2)若函數(shù)yf(x)x∈(01]上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】班主任為了對本班學生的考試成績進行分析,決定從本班24名女同學,18名男同學中隨機抽取一個容量為7的樣本進行分析.

(1)如果按照性別比例分層抽樣,可以得到多少個不同的樣本?(寫出算式即可,不必計算出結(jié)果)

(2)如果隨機抽取的7名同學的數(shù)學,物理成績(單位:分)對應如下表:

學生序號

1

2

3

4

5

6

7

數(shù)學成績

60

65

70

75

85

87

90

物理成績

70

77

80

85

90

86

93

①若規(guī)定85分以上(包括85分)為優(yōu)秀,從這7名同學中抽取3名同學,記3名同學中數(shù)學和物理成績均為優(yōu)秀的人數(shù)為,求的分布列和數(shù)學期望;

②根據(jù)上表數(shù)據(jù),求物理成績關(guān)于數(shù)學成績的線性回歸方程(系數(shù)精確到0.01);若班上某位同學的數(shù)學成績?yōu)?6分,預測該同學的物理成績?yōu)槎嗌俜郑?/span>

附:線性回歸方程,

其中.

76

83

812

526

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一個給定的正邊形的頂點中隨機地選取三個不同的頂點,任何一種選法的可能性是相等的,則正多邊形的中心位于所選三個點構(gòu)成的三角形內(nèi)部的概率為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義符號函數(shù),已知.

1)求關(guān)于的表達式,并求的最小值.

2)當時,函數(shù)上有唯一零點,求的取值范圍.

3)已知存在,使得對任意的恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐中,,,.

1)求證:

2)若二面角的大小為時,求的中線與面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

1)當時,求的單調(diào)區(qū)間;

2)若時,恒成立,求實數(shù)的取值范圍.

附:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于項數(shù)為m)的有窮正整數(shù)數(shù)列,記,即中的最小值,設(shè)由組成的數(shù)列稱為的“新型數(shù)列”.

1)若數(shù)列20192020,2019,2018,2017,請寫出的“新型數(shù)列”的所有項;

2)若數(shù)列滿足,且其對應的“新型數(shù)列”項數(shù),求的所有項的和;

3)若數(shù)列的各項互不相等且所有項的和等于所有項的積,求符合條件的及其對應的“新型數(shù)列”.

查看答案和解析>>

同步練習冊答案