若z∈C且|z+2-2i|=1,則|z-1-2i|的最小值是(  )
A、2B、3C、4D、5
考點:復(fù)數(shù)求模
專題:數(shù)系的擴充和復(fù)數(shù)
分析:根據(jù)兩個復(fù)數(shù)差的幾何意義,求得|z-1-2i|的最小值.
解答: 解:∵|z+2-2i|=1,∴復(fù)數(shù)z對應(yīng)點在以C(-2,2)為圓心、以1為半徑的圓上.
而|z-1-2i|表示復(fù)數(shù)z對應(yīng)點與點A(1,2)間的距離,
故|z-1-2i|的最小值是|AC|-1=2,
故選:A.
點評:本題主要考查兩個復(fù)數(shù)差的幾何意義,求復(fù)數(shù)的模的最值,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果-1,m、n、p、-16成等比數(shù)列,那么( 。
A、n=-4,mp=-16
B、n=-4,mp=16
C、n=4,mp=16
D、n=4,mp=-16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于二項式(1-x)1999,有下列四個命題正確的是( 。
A、展開式中T1000=C
 
1000
1999
x999
B、展開式中非常數(shù)項系數(shù)和是1
C、展開式中系數(shù)最大的項是第1000項和第1001項
D、當x=2000時,(1-x)1999除以2000的余數(shù)是1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(
π
3
+α)=
4
5
,則cos(
6
+α)的值為( 。
A、-
3
5
B、
3
5
C、-
4
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin570°=( 。
A、
3
B、-
3
2
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖A、B、C、D是某油田的四口油井,計劃建三條路,將這四口油井連結(jié)起來(每條路只連結(jié)兩口油井),那么不同的建路方案有( 。
A、12種B、14種
C、16種D、18種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面上復(fù)數(shù)i,1,4+2i所對應(yīng)的點分別是A、B、C,則平行四邊形ABCD的對角線BD的長為( 。
A、5
B、
13
C、
15
D、
17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,∠ACB=90°,以邊AC上的點O為圓心,OA為半徑作圓,與邊AB,AC分別交于點E,F(xiàn),EC與⊙O交于點D,連結(jié)AD并延長交BC于P,已知AE=EB=4,AD=5,求AP的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,已知a1=1,a2=3,設(shè)Sn為數(shù)列{an}的前n項和,對于任意的n≥2,n∈N,Sn+1+Sn-1=2(Sn+1)都成立.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)Tn為數(shù)列{
1
anan+1
}
的前n項和,若Tn≤λan+1對n∈N*恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案