4.已知f(x)=$\left\{\begin{array}{l}{-x,-1≤x<0}\\{{x}^{2},0≤x<1}\\{x,1≤x≤2}\end{array}\right.$
(1)求f($\frac{3}{2}$),f[f (-$\frac{2}{3}$)]值;
(2)若f (x)=$\frac{1}{2}$,求x值;
(3)作出該函數(shù)簡圖(畫在如圖坐標(biāo)系內(nèi));
(4)求函數(shù)的單調(diào)增區(qū)間與值域.

分析 (1)由分段函數(shù),運(yùn)用代入法,計(jì)算即可得到所求值;
(2)分別對(duì)分段函數(shù)的每一段考慮,解方程即可得到所求值;
(3)運(yùn)用一次函數(shù)和二次函數(shù)的畫法,即可得到所求圖象;
(4)由圖象可得增區(qū)間和值域.

解答 解:(1)f(x)=$\left\{\begin{array}{l}{-x,-1≤x<0}\\{{x}^{2},0≤x<1}\\{x,1≤x≤2}\end{array}\right.$,
可得f($\frac{3}{2}$)=$\frac{3}{2}$                  
f(-$\frac{2}{3}$)=$\frac{2}{3}$,即有f[f(-$\frac{2}{3}$)]=f($\frac{2}{3}$)=$\frac{4}{9}$.
(2)當(dāng)-1≤x<0時(shí),f(x)=-x=$\frac{1}{2}$,可得x=-$\frac{1}{2}$符合題意,
當(dāng)0≤x<1時(shí),f(x)=x2=$\frac{1}{2}$,可得x=$\frac{\sqrt{2}}{2}$或x=-$\frac{\sqrt{2}}{2}$(不合,舍去),
當(dāng)1≤x≤2時(shí),f(x)=x=$\frac{1}{2}$(不合題意,舍去)        
綜上:x=-$\frac{1}{2}$或$\frac{\sqrt{2}}{2}$.
(3)見右圖:
(4)由圖象可得函數(shù)的增區(qū)間為[0,2],
函數(shù)的值域?yàn)閇0,2].

點(diǎn)評(píng) 本題考查分段函數(shù)的運(yùn)用:求自變量和函數(shù)值,以及單調(diào)區(qū)間和值域,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.不用計(jì)算器求下列各式的值
(1)${log_3}\frac{{\root{4}{27}}}{3}+lg25+lg4+{7^{{{log}_7}2}}$
(2)${({2\frac{1}{4}})^{\frac{1}{2}}}-{({-9.6})^0}-{({3\frac{3}{8}})^{-\frac{2}{3}}}+{({1.5})^{-2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長軸長為4.若以原點(diǎn)為圓心、橢圓短半軸長為半徑的圓與直線y=x+2相切,則橢圓的離心率為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)z=2x+y,其中變量x和y滿足條件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,求z的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求函數(shù)的定義域:①f(x)=2x+$\sqrt{lnx}$    ②f(x)=$\frac{\sqrt{x(x-3)}}{2x-1}$     ③f(x)=$\frac{\sqrt{lgx}}{x-2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若直線ax-by+1=0(a>0,b>0)被圓x2+y2+2x-4y+1=0截得的弦長為4,則$\frac{2}{a}+\frac{1}$的最小值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知:平面α∥β,直線AB,AC分別與α,β交于點(diǎn)D,B和點(diǎn)E,C,求證:$\frac{AD}{AB}$=$\frac{AE}{AC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.橢圓C1的中心在坐標(biāo)原點(diǎn),兩焦點(diǎn)分別為雙曲線C2:$\frac{{x}^{2}}{2}$-y2=1的頂點(diǎn),直x+$\sqrt{2}$y=0與橢圓C1交于A、B兩點(diǎn),且點(diǎn)A的坐標(biāo)為(-$\sqrt{2}$,1),點(diǎn)P是橢圓C1上異于點(diǎn)A,B的任意一點(diǎn).
(1)求橢圓C1的標(biāo)準(zhǔn)方程;
(2)求△ABP面積的最大值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)y=cosx的定義域?yàn)閇a,b].值域?yàn)閇-1,$\frac{\sqrt{2}}{2}$],則b-a的值不可能是( 。
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.πD.$\frac{5π}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案