16.已知:平面α∥β,直線AB,AC分別與α,β交于點D,B和點E,C,求證:$\frac{AD}{AB}$=$\frac{AE}{AC}$.

分析 接BC、ED,由平面平行的性質(zhì)得BC∥DE,由此能證明$\frac{AD}{AB}$=$\frac{AE}{AC}$.

解答 證明:連接BC、ED,構(gòu)成△ABC,
∵平面α∥β,直線AB,AC分別與α,β交于點D,B和點E,C,
∴△ABC所在的平面與兩平面的交線BC與DE平行,即BC∥DE,
△AED∽△ABC,相似三角形對應(yīng)邊成比例,
∴$\frac{AD}{AB}$=$\frac{AE}{AC}$.

點評 本題考查兩組線段成比例的證明,是基礎(chǔ)題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)滿足f(x+1)=2x+1,則f(1)等于( 。
A.3B.-3C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知正數(shù)數(shù)列{an}滿足an+1=2an,則此數(shù)列{an}是( 。
A.遞增數(shù)列B.遞減數(shù)列
C.常數(shù)列D.無法確定數(shù)列的增減性

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f(x)=$\left\{\begin{array}{l}{-x,-1≤x<0}\\{{x}^{2},0≤x<1}\\{x,1≤x≤2}\end{array}\right.$
(1)求f($\frac{3}{2}$),f[f (-$\frac{2}{3}$)]值;
(2)若f (x)=$\frac{1}{2}$,求x值;
(3)作出該函數(shù)簡圖(畫在如圖坐標(biāo)系內(nèi));
(4)求函數(shù)的單調(diào)增區(qū)間與值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.關(guān)于x的一元二次方程x2+(m-1)x+1=0在區(qū)間[0,2]上恰有唯一根,則實數(shù)m的取值范圍是(-∞,-$\frac{3}{2}$]∪{-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=|x-3|-|x+1|,命題p:關(guān)于x的不等式f(x)>a對x∈R恒成立;命題q:函數(shù)y=x2-ax+4在區(qū)間[5,+∞)上單調(diào)遞增.
(1)解不等式f(x)≤0;
(2)若命題“p或q”是真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=${4}^{x-\frac{1}{2}}$-m•2x-1(0≤x≤2).
(1)若m=2,求函數(shù)f(x)的最大值和最小值;
(2)若f(x)>0對任意x∈[0,2]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的左、上頂點分別為A、B,橢圓C的左焦點為F,且△ABF的面積為$\frac{2-\sqrt{3}}{2}$,則橢圓C的方程為$\frac{{x}^{2}}{4}+{y}^{2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,某地一天從6時到14時的溫度變化曲線近似滿足函數(shù)y=Asin(ωx+φ)+b.
(1)求這一天的最大溫差;
(2)寫出這段曲線的函數(shù)解析式.

查看答案和解析>>

同步練習(xí)冊答案