分析 (1)根據(jù)題意求出ω的值,確定函數(shù)的解析式,利用正弦函數(shù)的圖象與性質(zhì)求得出現(xiàn)最高溫時(shí)t的值;
(2)令f(t)=28,求出t的值即可得出結(jié)論.
解答 解:(1)∵f(t)=24-8sin(ωt+$\frac{π}{3}$),
且早上8時(shí)的溫度為24℃,即f(8)=24,
∴sin(8ω+$\frac{π}{3}$)=0,
∴8ω+$\frac{π}{3}$=kπ,k∈Z,
解得ω=$\frac{1}{8}$(k-$\frac{1}{3}$)π,k∈Z;
又ω∈(0,$\frac{π}{8}$),
∴k=1時(shí),ω=$\frac{π}{12}$;
∴函數(shù)f(t)=24-8sin($\frac{π}{12}$t+$\frac{π}{3}$),t∈(0,24];
又sin($\frac{π}{12}$t+$\frac{π}{3}$)=-1時(shí),f(t)取得最大值,
且$\frac{π}{12}$t+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{7π}{3}$],
∴令$\frac{π}{12}$t+$\frac{π}{3}$=$\frac{3π}{2}$,解得t=14,
即這一天在14時(shí)(也是下午2時(shí))出現(xiàn)最高溫度,最高溫度是32°C;
(2)依題意:令24-8sin($\frac{π}{12}$t+$\frac{π}{3}$)=28,可得
sin($\frac{π}{12}$t+$\frac{π}{3}$)=-$\frac{1}{2}$,
∵($\frac{π}{12}$t+$\frac{π}{3}$)∈($\frac{π}{3}$,$\frac{7π}{3}$),
∴$\frac{π}{12}$t+$\frac{π}{3}$=$\frac{7π}{6}$或$\frac{π}{12}$t+$\frac{π}{3}$=$\frac{11π}{6}$,
解得t=10或t=18,
即中央空調(diào)應(yīng)在上午10時(shí)開啟,下午18時(shí)(即下午6時(shí))關(guān)閉.
點(diǎn)評(píng) 本題考查了三角函數(shù)在實(shí)際應(yīng)用中的問(wèn)題,解題時(shí)應(yīng)建立數(shù)學(xué)模型,利用三角函數(shù)解決實(shí)際問(wèn)題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-8,1) | B. | (-1,-$\frac{3}{2}$) | C. | (1,$\frac{3}{2}$) | D. | (8,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -1 | C. | $-\frac{1}{2}i$ | D. | $\frac{{\sqrt{3}}}{2}-\frac{1}{2}i$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com