14.已知直線l1:ax+y+3=0,l2:x+(2a-3)y=4,l1⊥l2,則a=1.

分析 利用兩直線垂直,x,y系數(shù)積的和為0的性質(zhì)求解.

解答 解:∵直線l1:ax+y+3=0,l2:x+(2a-3)y=4,l1⊥l2,
∴a+(2a-3)=0,
解得a=1.
故答案為:1.

點(diǎn)評 本題考查直線方程中參數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意直線垂直的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知定義域?yàn)閇1,2]的函數(shù)f(x)=2+logax(a>0,a≠1)的圖象過點(diǎn)(2,3),若g(x)=f(x)+f(x2),則函數(shù)g(x)的值域?yàn)閇4,$\frac{11}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知定義域?yàn)镽的偶函數(shù)f(x)在(0,+∞)上為增函數(shù),則(  )
A.f(4)>f(3)B.f(-5)>f(5)C.f(-3)>f(-5)D.f(3)>f(-6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某地一天的溫度(單位:℃)隨時(shí)間t(單位:小時(shí))的變化近似滿足函數(shù)關(guān)系:f(t)=24-8sin(ωt+$\frac{π}{3}$),t∈[0,24),ω∈(0,$\frac{π}{8}$),且早上8時(shí)的溫度為24℃.
(1)求函數(shù)的解析式,并判斷這一天的最高溫度是多少?出現(xiàn)在何時(shí)?
(2)當(dāng)?shù)赜幸煌ㄏ鼱I業(yè)的超市,為了節(jié)省開支,規(guī)定在環(huán)境溫度超過28℃時(shí),開啟中央空調(diào)降溫,否則關(guān)閉中央空調(diào),問中央空調(diào)應(yīng)在何時(shí)開啟?何時(shí)關(guān)閉?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.對于函數(shù)f(x)=tan2x,下列選項(xiàng)中正確的是( 。
A.f(x)在(-$\frac{π}{2}$,$\frac{π}{4}$)上是遞增的B.f(x)在定義域上單調(diào)遞增
C.f(x)的最小正周期為πD.f(x)的所有對稱中心為($\frac{kπ}{4}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在Rt△ABC中,∠C=90°,B E平分∠A BC交 AC于點(diǎn)E,點(diǎn)D在AB上,DE⊥EB,且${A}D=2\sqrt{3}$,AE=6.
(I)判斷直線 AC與△BDE的外接圓的位置關(guān)系并說明理由;
(II)求EC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知A={x|0≤x≤4},B={y|0≤y≤2},從A到B的對應(yīng)法則分別是:
(1)$f:x→y=\frac{1}{2}x$; (2)f:x→y=x-2;
(3)$f:x→y=\sqrt{x}$; (4)f:x→y=|x-2|.
其中能夠成一 一映射的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=|3x-a|.
(Ⅰ)若不等式f(x)≤3的解集為{x|-$\frac{2}{3}$≤x≤$\frac{4}{3}$},求實(shí)數(shù)a的值.
(Ⅱ)在(Ⅰ)的條件下,令g(x)=f(x)+f(x+5),若不等式g(x)≥|m-1|對一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{\sqrt{3}}{2}sin2x-{cos}^{2}x+\frac{1}{2}$.
(1)當(dāng)$x∈[0,\frac{π}{2}]$時(shí),求函數(shù)f(x)的取值范圍;
(2)將f(x)的圖象向左平移$\frac{π}{6}$ 個(gè)單位得到函數(shù)g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案