8.已知等比數(shù)列{an}滿足a1=2,16a3a5=8a4-1,則a2=( 。
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{8}$

分析 利用等比數(shù)列的通項(xiàng)公式即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q,
∵a1=2,16a3a5=8a4-1,
∴16×22q6=8×2×q3-1,
化為64q6-16q3+1=0,
解得8q3=1,
解得q=$\frac{1}{2}$.
則a2=$2×\frac{1}{2}$=1.
故選:B.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式、一元二次方程的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1(-3,0)、F2(3,0),直線y=kx與橢圓交于A、B兩點(diǎn).
(1)若三角形AF1F2的周長(zhǎng)為$4\sqrt{3}+6$,求橢圓的標(biāo)準(zhǔn)方程;
(2)若$2\sqrt{3}<a<3\sqrt{2}$,且以AB為直徑的圓過(guò)橢圓的右焦點(diǎn),求直線y=kx斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=k(x+1)2-ln(x+1)(k∈R).
(1)當(dāng)k=$\frac{1}{2}$時(shí),求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(2)若x軸是曲線y=f(x)的一條切線,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知f(x)=1+1ogx2+1og${\;}_{{x}^{2}}$4+1og${\;}_{{x}^{3}}$8,則使f(x)<0的x的取值范圍是( 。
A.(0,1)B.(1,+∞)C.($\frac{1}{8}$,1)D.(0,$\frac{1}{8}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.復(fù)數(shù)$z=\frac{1-3i}{1+i}$的模是(  )
A.2B.1C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知橢圓M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),點(diǎn)F1(-1,0)、C(-2,0)分別是橢圓M的左焦點(diǎn)、左頂點(diǎn),過(guò)點(diǎn)F1的直線l(不與x軸重合)交M于A,B兩點(diǎn).
(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在直線l,使得點(diǎn)B在以線段F1C為直徑的圓上,若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖中的曲線是指數(shù)函數(shù)的圖象,已知a的值分別取$\sqrt{2}$,$\frac{4}{3}$,$\frac{3}{10}$,$\frac{1}{5}$,則相應(yīng)于曲線C1,C2,C3,C4的a依次為( 。
A.$\frac{4}{3}$,$\sqrt{2}$,$\frac{1}{5}$,$\frac{3}{10}$B.$\sqrt{2}$,$\frac{4}{3}$,$\frac{3}{10}$,$\frac{1}{5}$C.$\frac{3}{10}$,$\frac{1}{5}$,$\sqrt{2}$,$\frac{4}{3}$D.$\frac{1}{5}$,$\frac{3}{10}$,$\frac{4}{3}$,$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在△ABC中,若cosA=$\frac{4}{5}$,tan(A-B)=-$\frac{1}{2}$,則tanB=( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在四面體ABCD中,AB=3,BC=7,CD=11,DA=9.則$\overrightarrow{AC}$•$\overrightarrow{BD}$的值為( 。
A.0B.1C.2D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案