(本小題12分)如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點(diǎn),D為PB中點(diǎn),且△PMB為正三角形.

(Ⅰ)求證:DM∥平面APC;
(II)求證:平面ABC⊥平面APC.

(1)見(jiàn)解析(2)見(jiàn)解析

解析試題分析:證明:(1)在△中,分別是的中點(diǎn)

……6分
(2)在正三角形MPB中,


……12分
考點(diǎn):本小題主要考查線面平行和面面垂直的證明.
點(diǎn)評(píng):對(duì)于立體幾何中的證明題,不外乎線線、線面、面面的平行與垂直的證明,只要根據(jù)題意找出各種位置關(guān)系需要滿足的條件即可,這就要求必須對(duì)所學(xué)過(guò)的定義、判斷定理和性質(zhì)定理記清楚并能靈活運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
正方體ABCD-A1B1C1D1中,E、G分別是BC、C1D1的中點(diǎn),如圖所示.

(1)求證:BD⊥A1C;
(2)求證:EG∥平面BB1D1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,長(zhǎng)方體AC1中,AB=2,BC=AA1=1.E、F、G分別為棱DD1、D1C1、BC的中點(diǎn).

(1)求證:平面平面;
(2)在底面A1D1上有一個(gè)靠近D1的四等分點(diǎn)H,求證: EH∥平面FGB1;
(3)求四面體EFGB1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知四棱錐的底面是正方形,⊥底面,且,點(diǎn)分別為側(cè)棱、的中點(diǎn) 

(1)求證:∥平面;
(2)求證:⊥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
已知棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,P在對(duì)角線A1C1上,記二面角P-AB-C為α,二面角P-BC-A為β。

(1)當(dāng)A1P:PC1=1:3時(shí),求cos(α+β)的大小。
(2)點(diǎn)P是線段A1C1(包括端點(diǎn))上的一個(gè)動(dòng)點(diǎn),問(wèn):當(dāng)點(diǎn)P在什么位置時(shí),α+β有最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)如圖,已知三棱錐的側(cè)棱兩兩垂直,且,的中點(diǎn).

(Ⅰ)求異面直線所成角的余弦值;
(Ⅱ)BE和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)
如圖,四棱錐的側(cè)面垂直于底面,,,,在棱上,的中點(diǎn),二面角

(1)求的值;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)
如圖,在底面是正方形的四棱錐中,,于點(diǎn),中點(diǎn),上一點(diǎn).
⑴求證:;
⑵確定點(diǎn)在線段上的位置,使//平面,并說(shuō)明理由.
⑶當(dāng)二面角的大小為時(shí),求與底面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

、如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點(diǎn)。
求證:(1)PA∥平面BDE
(2)平面PAC平面BDE

查看答案和解析>>

同步練習(xí)冊(cè)答案