設(shè)等差數(shù)列{an}的前n項和為Sn,已知(a2012-1)3+2014a2012=0,(a3-1)3+2014a3=4028,則下列結(jié)論正確的是( 。
A、S2014=2014,a2012<a3
B、S2014=2014,a2012>a3
C、S2014=2013,a2012<a3
D、S2014=2013,a2012>a3
考點:等差數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:構(gòu)造函數(shù)f(x)=(x-1)3+2014x,由函數(shù)的單調(diào)性可判a2012<a3,已知兩式相加分解因式,由g(t)為增函數(shù),且g(2)=4028,可得t=2,進(jìn)而由等差數(shù)列的性質(zhì)和求和公式可得.
解答: 解:構(gòu)造函數(shù)f(x)=(x-1)3+2014x,
則f′(x)=3(x-1)2+2014>0,
∴函數(shù)f(x)=(x-1)3+2014x單調(diào)遞增,
∵f(a3)=4028>f(a2012)=0,
∴a2012<a3,排除B和D,
已知兩式相加可得(a2012-1)3+2014a2012+(a3-1)3+2014a3=4028
分解因式可得(a3+a2012-2)[(a2012-1)2-(a2012-1)(a3-1)+(a3-1)2]+2014(a3+a2012)=4028,
令a3+a2012=t,則有g(shù)(t)=[(a2012-1)2-(a2012-1)(a3-1)+(a3-1)2](t-2)+2014t,
∵[(a2012-1)2-(a2012-1)(a3-1)+(a3-1)2]>0,∴g(t)為增函數(shù),
又∵g(2)=4028,∴必有t=2,即a3+a2012=2,
∴S2014=
2014(a1+a2014)
2
=
2014(a3+a2012)
2
=2014
故選:A
點評:本題考查等差數(shù)列的求和公式,涉及函數(shù)的單調(diào)性的應(yīng)用和構(gòu)造函數(shù)的技巧,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的S是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

同時投擲兩個骰子,則向上的點數(shù)之差的絕對值為4的概率是( 。
A、
1
18
B、
1
12
C、
1
9
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線f(x)=2x在x=0處的切線方程為(  )
A、y=x-1
B、y=x+1
C、y=(x-1)ln2
D、y=xln2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一元二次不等式f(x)>0的解集為{x|-2<x<1},則f(2x)>0的解集為( 。
A、{x|x<-2或x>0}
B、{x|x<0或x>2}
C、{x|x>0}
D、{x|x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如圖所示,當(dāng)程序運行后,輸出T的值是( 。
A、204B、140
C、91D、55

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式
4-x2
+
|x|
x
≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示.已知正視圖為兩個邊長為1的正方形拼成的矩形,側(cè)視圖是一個長為
3
,寬為1的矩形,俯視圖是底邊長為1的平行四邊形.
(Ⅰ)求該幾何體的體積V;
(Ⅱ)求該幾何體的表面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
x+1
,點O為坐標(biāo)原點,點An(n,f(n))(n∈N+),若記直線OAn的傾斜角為θn,則tanθ1+tanθ2+…+tanθn=
 

查看答案和解析>>

同步練習(xí)冊答案