在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,若a2+b2=2014c2,則
2tanA•tanB
tanC(tanA+tanB)
的值為( 。
A、0B、1
C、2013D、2014
考點(diǎn):三角函數(shù)的化簡求值
專題:三角函數(shù)的求值
分析:由a2+b2=2014c2,利用余弦定理可得a2+b2-c2=2013c2=2abcosC.利用三角函數(shù)基本關(guān)系式和兩角和的正弦公式、正弦定理可得
2tanA•tanB
tanC(tanA+tanB)
=
2sinA
cosA
sinB
cosB
sinC
cosC
(
sinA
cosA
+
sinB
cosB
)
=
2sinAsinBcosC
sinCsin(A+B)
=
2abcosC
c2
即可得出.
解答: 解:∵a2+b2=2014c2,
∴a2+b2-c2=2013c2=2abcosC.
2tanA•tanB
tanC(tanA+tanB)
=
2sinA
cosA
sinB
cosB
sinC
cosC
(
sinA
cosA
+
sinB
cosB
)
=
2sinAsinBcosC
sinCsin(A+B)
=
2abcosC
c2
=2013.
故選:C.
點(diǎn)評(píng):本題考查了三角函數(shù)基本關(guān)系式和兩角和的正弦公式、正弦定理、余弦定理等基礎(chǔ)知識(shí)與基本技能方法,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)不等式組
x+y-3≤0
x-2y-3≤0
x≥0
表示的平面區(qū)域?yàn)镈,在區(qū)域D內(nèi)隨機(jī)取一點(diǎn)P(x0,y0),則點(diǎn)P滿足|x|+|y-
2
|≤
2
的概率為( 。
A、
1
3
B、
4
2
9
C、
8
27
D、
7
2
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(1,0,2),B(1,-3,1),點(diǎn)M在y軸上且到A、B兩點(diǎn)的距離相等,則M點(diǎn)坐標(biāo)為(  )
A、(-1,0,0)
B、(0,-1,0)
C、(0,0,1)
D、(0,1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)(-1,1)的直線與圓x2+y2-2x-4y-11=0截得的弦長為4
3
,則該直線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖所示,其中俯視圖中的曲線是一段半圓弧,則這個(gè)幾何體的表面積是( 。
A、12-πB、12+π
C、14-πD、14+π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

遼寧號(hào)航母紀(jì)念章從2012年10月5日起開始上市.通過市場(chǎng)調(diào)查,得到該紀(jì)念章每1枚的市場(chǎng)價(jià)y(單位:元)與上市時(shí)間x(單位:天)的數(shù)據(jù)如下:
上市時(shí)間x天 4 10 36
市場(chǎng)價(jià)y元 90 51 90
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述遼寧號(hào)航母紀(jì)念章的市場(chǎng)價(jià)y與上市時(shí)間x的變化關(guān)系并說明理由:①y=ax+b;②y=ax2+bx+c;③y=alogbx.
(2)利用你選取的函數(shù),求遼寧號(hào)航母紀(jì)念章市場(chǎng)價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(π+α)=2cos(π-α),計(jì)算:
(1)
2sinα-cosα
sinα+2cosα

(2)sin2α+sinαcosα-2cos2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x3+y3和x2-3xy-4y2的公因式為( 。
A、x+4yB、x-4y
C、x-yD、x+y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2(x-
π
6
)-sin2x

(1)求f(
π
12
)
的值;
(2)當(dāng)x∈[0,
π
2
]
,求函數(shù)y=f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案