【題目】已知下列說法:①對于線性回歸方程,變量增加一個單位時,平均增加5個單位;②在線性回歸模型中,相關(guān)指數(shù)越接近于1,則模型回歸效果越好;③兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)就越接近1;④互斥事件不一定是對立事件,對立事件一定是互斥事件;⑤演繹推理是從特殊到一般的推理,它的一般模式是“三段論”.其中說法錯誤的個數(shù)為( )

A.1B.2C.3D.4

【答案】C

【解析】

結(jié)合線性回歸直線方程的性質(zhì)、相關(guān)系數(shù)的性質(zhì),以及互斥事件和對立事件的區(qū)別,結(jié)合演繹推理的知識,對選項進行逐一分析,即可判斷.

對于命題①,對于回歸直線,變量增加一個單位時,平均減少5個單位,命題①錯誤;

對于命題②,相關(guān)指數(shù)越大,擬合效果越好,命題②正確;

對于命題③,兩個隨機變量的線性相關(guān)性越強,則相關(guān)系的絕對值越接近于1,命題③錯誤;

對于命題④,互斥事件不一定對立,對立事件一定互斥,故④正確;

對于命題⑤,演繹推理是從一般到特殊的推理,故⑤錯誤.

綜上所述,錯誤的有①③⑤.

故選:C.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】平面上有12個點,且任意三點不共線,以其中任意一點為始點,另一點為終點作向量,且作出所有的向量.其中3邊向量的和為零向量的三角形稱為零三角形”.求以這些點為頂點的零三角形個數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】齊王有上等,中等,下等馬各一匹;田忌也有上等,中等,下等馬各一匹.田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬;田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬;田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機各選一匹進行一場比賽,若有優(yōu)勢的馬一定獲勝,則齊王的馬獲勝的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知直線的參數(shù)方程為為參數(shù)).在以坐標原點為極點,軸的正半軸為極軸,且與直角坐標系長度單位相同的極坐標系中,曲線的極坐標方程是.

(1)求直線的普通方程與曲線的直角坐標方程;

(2)設(shè)點.若直與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知點,若T表示的內(nèi)部及三邊(含頂點)上的所有點的集合,則二元函數(shù)()的取值范圍是____________。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)統(tǒng)計,某校學生上學路程所需要時間全部介于之間(單位:分鐘).現(xiàn)從在校學生中隨機抽取人,按上學所學時間分組如下:第,第,第,第,第,得打如圖所示的頻率分布直方圖.

Ⅰ)根據(jù)圖中數(shù)據(jù)求的值.

Ⅱ)若從第,組中用分成抽樣的方法抽取人參與交通安全問卷調(diào)查,應從這三組中各抽取幾人?

Ⅲ)在(Ⅱ)的條件下,若從這人中隨機抽取人參加交通安全宣傳活動,求第組至少有人被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果一個正整數(shù)n在三進制下的各位數(shù)字之和能被3整除,則稱n為“恰當數(shù)”。求S={1,2,...,2005}中全體恰當數(shù)之和。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),函數(shù),其中為常數(shù),且,令函數(shù)為函數(shù)的積函數(shù).

1)求函數(shù)的表達式,并求其定義域;

2)當時,求函數(shù)的值域

3)是否存在自然數(shù),使得函數(shù)的值域恰好為?若存在,試寫出所有滿足條件的自然數(shù)所構(gòu)成的集合;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將編號為1,2,…,9的九個小球隨機放置在圓周的九個等分點上,每個等分點上各有一個小球.設(shè)圓周上所有相鄰兩球號碼之差的絕對值之和為S.求使S達到最小值的放法的概率.注:如果某種放法經(jīng)旋轉(zhuǎn)或鏡面反射后可與另一種放法重合,則認為是相同的放法.

查看答案和解析>>

同步練習冊答案