“|x|≥1”是“x≥1”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)不等式之間的關系,結合充分條件和必要條件的定義進行判斷即可.
解答: 解:若|x|≥1,則x≥1或x≤-1,
即“|x|≥1”是“x≥1”的必要而不充分條件,
故選:B
點評:本題主要考查充分條件和必要條件的判斷,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

有下列四個命題:
①“若實數(shù)x,y滿足x2+y2≠0,則實數(shù)x,y不全為零”的否命題,
②“若a>b,則a2>b2”的否定;
③“若m>0,則x2+x-m=0有實根”的逆否命題,
④“對頂角相等”的逆命題;
其中真命題的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設m,n是兩條不同的直線,α,β是兩個不同的平面.( 。
A、若m∥α,n?α,則m∥n
B、若m⊥α,n?α,則m⊥n
C、若α∥β,m?α,n?β,則m∥n
D、若α⊥β,m?α,n?β,則m⊥n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=cosx•ln|x|的部分圖象大致是下圖中的( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若角α的終邊落在直線x+y=0上,則
|tanα|
tanα
+
sinα
1-cos2α
2
的值等于( 。
A、2或-2或0B、-2或0
C、2或-2D、0或2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三次函數(shù)f(x)=ax3+2x+5在x∈(-∞,+∞)內是增函數(shù),則( 。
A、a>0
B、a<0
C、a=1
D、a=
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線x2+y2+4x-4y=0關于( 。
A、直線x=4對稱
B、直線x+y=0對稱
C、直線x-y=0對稱
D、直線(-4,4)對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

把函數(shù)y=cosx的圖象向左平移
π
4
個單位,然后把,圖象上的所有點的橫坐標縮小到原來的
1
2
(縱坐標不變),則所得圖形對應的函數(shù)解析式為( 。
A、y=cos(
1
2
x+
π
4
B、y=cos(2x+
π
4
C、y=cos(
1
2
x+
π
8
D、y=cos(2x+
π
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示是《函數(shù)的應用》的知識結構圖,如果要加入“用二分法求方程的近似解”,則應該放在( 。
A、“函數(shù)與方程”的上位
B、“函數(shù)與方程”的下位
C、“函數(shù)模型及其應用”的上位
D、“函數(shù)模型及其應用”的下位

查看答案和解析>>

同步練習冊答案