【題目】已知函數(shù)f(x)=x2+2x+a,g(x)=lnx﹣2x,如果存在 ,使得對(duì)任意的 ,都有f(x1)≤g(x2)成立,則實(shí)數(shù)a的取值范圍是

【答案】(﹣∞,ln2﹣ ]
【解析】解:求導(dǎo)函數(shù),可得g′(x)= ﹣2= ,x∈[ ,2],g′(x)<0,

∴g(x)min=g(2)=ln2﹣4,

∵f(x)=x2+2x+a=(x+1)2+a﹣1,

∴f(x)在[ ,2]上單調(diào)遞增,

∴f(x)min=f( )= +a,

∵如果存在 ,使得對(duì)任意的 ,都有f(x1)≤g(x2)成立,

+a≤ln2﹣4,

∴a≤ln2﹣

故答案為(﹣∞,ln2﹣ ]

求導(dǎo)函數(shù),分別求出函數(shù)f(x)的最小值,g(x)的最小值,進(jìn)而可建立不等關(guān)系,即可求出a的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋擲一枚質(zhì)地均勻的骰子兩次,記事件A={兩次的點(diǎn)數(shù)均為奇數(shù)},B={兩次的點(diǎn)數(shù)之和小于7},則P(B|A)=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣a|,a<0.
(Ⅰ)證明f(x)+f(﹣ )≥2;
(Ⅱ)若不等式f(x)+f(2x)< 的解集非空,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax﹣lnx,F(xiàn)(x)=ex+ax,其中x>0.
(1)若a<0,f(x)和F(x)在區(qū)間(0,ln3)上具有相同的單調(diào)性,求實(shí)數(shù)a的取值范圍;
(2)設(shè)函數(shù)h(x)=x2﹣f(x)有兩個(gè)極值點(diǎn)x1、x2 , 且x1∈(0, ),求證:h(x1)﹣h(x2)> ﹣ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】農(nóng)科院的專家為了了解新培育的甲、乙兩種麥苗的長(zhǎng)勢(shì)情況,從甲、乙兩種麥苗的試驗(yàn)田中各抽取6株麥苗測(cè)量麥苗的株高,數(shù)據(jù)如下:(單位:cm)

甲:9,10,11,12,10,20

乙:8,14,13,10,12,21.

(1)在給出的方框內(nèi)繪出所抽取的甲、乙兩種麥苗株高的莖葉圖;

(2)分別計(jì)算所抽取的甲、乙兩種麥苗株高的平均數(shù)與方差,并由此判斷甲、乙兩種麥苗的長(zhǎng)勢(shì)情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】潮州統(tǒng)計(jì)局就某地居民的月收入調(diào)查了人,并根據(jù)所得數(shù)據(jù)畫(huà)了樣本的頻率分

布直方圖(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在)。

(1)求居民月收入在的頻率;

(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);

(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再?gòu)倪@人中分層抽樣方法抽出人作進(jìn)一步分析,則月收入在的這段應(yīng)抽多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)校開(kāi)展的綜合實(shí)踐活動(dòng)中,某班進(jìn)行了小制作評(píng)比,作品上交時(shí)間為5月1日至30日,評(píng)委會(huì)把同學(xué)們上交的作品的件數(shù)按5天一組分組統(tǒng)計(jì),繪制了頻率分布直方圖,如圖所示,已知從左到右各長(zhǎng)方形的高的比為2 : 3 : 4 : 6 : 4 :1,第三組的頻數(shù)為12.

(1)求本次活動(dòng)參加評(píng)比的作品的件數(shù);

(2)哪組上交的作品數(shù)量最多,有多少件?

(3)經(jīng)過(guò)評(píng)比,第四組和第六組分別有10件、2件作品獲獎(jiǎng),問(wèn)這兩組哪組獲獎(jiǎng)率高?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).

(1)求的定義域及其零點(diǎn);

(2)討論并用函數(shù)單調(diào)性定義證明函數(shù)在定義域上的單調(diào)性;

(3)設(shè),當(dāng)時(shí),若對(duì)任意,存在,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系 中,直線 的參數(shù)方程為 為參數(shù)).再以原點(diǎn)為極點(diǎn),以 正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系 有相同的長(zhǎng)度單位.在該極坐標(biāo)系中圓 的方程為
(1)求圓 的直角坐標(biāo)方程;
(2)設(shè)圓 與直線 交于點(diǎn) 、 ,若點(diǎn) 的坐標(biāo)為 ,求 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案