【題目】已知函數的最小正周期是,且當時,取得最大值3.
(1)求的解析式及單調增區(qū)間;
(2)若,且,求;
(3)將函數的圖象向右平移個單位長度后得到函數的圖象,且是偶函數,求m的最小值.
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點到準線的距離為,直線與拋物線交于兩點,過這兩點分別作拋物線的切線,且這兩條切線相交于點.
(1)若的坐標為,求的值;
(2)設線段的中點為,點的坐標為,過的直線與線段為直徑的圓相切,切點為,且直線與拋物線交于兩點,證明: .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四棱錐P﹣ABCD中,PD⊥底面ABCD,AD∥BC,AC⊥DB,∠CAD=60°,AD=2,PD=1.
(1)證明:AC⊥BP;
(2)求二面角C﹣AP﹣D的平面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線關于軸對稱,它的頂點在坐標原點,點在拋物線上.
(1)寫出該拋物線的標準方程及其準線方程;
(2)過點作兩條傾斜角互補的直線與拋物線分別交于不同的兩點,求證:直線的斜率是一個定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題:
①對立事件一定是互斥事件;②若A,B為兩個隨機事件,則P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,則P(A)+P(B)+P(C)=1;④若事件A,B滿足P(A)+P(B)=1,則A與B是對立事件.
其中正確命題的個數是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓的右頂點與上頂點分別為,橢圓的離心率為,且過點.
(1)求橢圓的標準方程;
(2)如圖,若直線與該橢圓交于兩點,直線的斜率互為相反數.
①求證:直線的斜率為定值;
②若點在第一象限,設與的面積分別為,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com