【題目】下列命題中:

①已知點(diǎn),動(dòng)點(diǎn)滿足,則點(diǎn)的軌跡是一個(gè)圓;

②已知,則動(dòng)點(diǎn)的軌跡是雙曲線;

③兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值就越接近于1;

④在平面直角坐標(biāo)系內(nèi),到點(diǎn)和直線的距離相等的點(diǎn)的軌跡是拋物線;

正確的命題是_________

【答案】①③

【解析】

根據(jù)軌跡方程的求解,以及雙曲線的定義,相關(guān)系數(shù)的性質(zhì),結(jié)合選項(xiàng)進(jìn)行逐一分析即可.

①:設(shè)動(dòng)點(diǎn),由,故可得,

整理得:,且,故該方程表示圓,則①正確;

②:根據(jù)雙曲線的定義,

則動(dòng)點(diǎn)的軌跡只表示雙曲線的左支,故②錯(cuò)誤;

③:根據(jù)相關(guān)系數(shù)的性質(zhì),相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值就越接近于1,故③正確;

④:因?yàn)辄c(diǎn)在直線上,

故滿足題意的點(diǎn)的軌跡為過點(diǎn)且垂直于直線的直線,故④錯(cuò)誤.

故答案為:①③.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是邊長為1的正三角形,點(diǎn)P所在的平面內(nèi),且a為常數(shù)),下列結(jié)論中正確的是( )

A.當(dāng)時(shí),滿足條件的點(diǎn)P有且只有一個(gè)

B.當(dāng)時(shí),滿足條件的點(diǎn)P有三個(gè)

C.當(dāng)時(shí),滿足條件的點(diǎn)P有無數(shù)個(gè)

D.當(dāng)a為任意正實(shí)數(shù)時(shí),滿足條件的點(diǎn)總是有限個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是奇函數(shù)的導(dǎo)函數(shù),,當(dāng)時(shí),,則使得成立的的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某足球俱樂部對“一線隊(duì)引援”和“青訓(xùn)”投入分別規(guī)劃如下:2018年,該俱樂部在“一線隊(duì)引援”投入資金為16000萬元,“青訓(xùn)”投入資金為1000萬元.計(jì)劃每年“一線隊(duì)引援”投入比上一年減少一半,“青訓(xùn)”投入比上一年增加一倍.

1)請問哪一年該俱樂部“一線隊(duì)引援”和“青訓(xùn)”投入總和最少?

2)從2018年起包括2018該俱樂部從哪一年開始“一線隊(duì)引援”和“青訓(xùn)”總投入之和不低于62000萬元?(總投入是指各年投入之和)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長方體中,已知,

1)求:凸多面體的體積;

2)若為線段的中點(diǎn),求點(diǎn)到平面的距離;

3)若點(diǎn)、分別在棱、上滑動(dòng),且線段的長恒等于,線段的中點(diǎn)為

①試證:點(diǎn)必落在過線段的中點(diǎn)且平行于底面的平面上;

②試求點(diǎn)的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了提高企業(yè)利潤,從2014年至2018年每年都對生產(chǎn)環(huán)節(jié)的改進(jìn)進(jìn)行投資,投資金額(單位:萬元)與年利潤增長量(單位:萬元)的數(shù)據(jù)如表:

年份

2014

2015

2016

2017

2018

投資金額/萬元

4.0

5.0

6.0

7.0

8.0

年利潤增長量/萬元

6.0

7.0

9.0

11.0

12.0

1)記年利潤增長量投資金額,現(xiàn)從2014年至2018年這5年中抽出兩年進(jìn)行調(diào)查分析,求所抽兩年都是萬元的概率;

2)請用最小二乘法求出關(guān)于的回歸直線方程;如果2019年該企業(yè)對生產(chǎn)環(huán)節(jié)改進(jìn)的投資金額為10萬元,試估計(jì)該企業(yè)在2019年的年利潤增長量為多少?

參考公式:,

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù)滿足:①對任意,存在正常數(shù),都有成立;②的值域?yàn)?/span>(),則函數(shù)是( )

A.周期為2的周期函數(shù)B.周期為4的周期函數(shù)

C.奇函數(shù)D.偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,BAC的中點(diǎn),,P是平行四邊形BCDE內(nèi)(含邊界)的一點(diǎn),且.有以下結(jié)論:

①當(dāng)x=0時(shí),y∈[2,3];

②當(dāng)P是線段CE的中點(diǎn)時(shí),

③若x+y為定值1,則在平面直角坐標(biāo)系中,點(diǎn)P的軌跡是一條線段;

xy的最大值為﹣1;

其中你認(rèn)為正確的所有結(jié)論的序號為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x3-6x+5,x∈R.

(1)求函數(shù)f(x)的極值;(2)若關(guān)于x的方程f(x)=a有三個(gè)不同的實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案