已知{an}是等比數(shù)列,a4•a7=-512,a3+a8=124,且公比為整數(shù),則公比q為( 。
A、2
B、-2
C、
1
2
D、-
1
2
考點:等比數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:由題設(shè)條件知a3和a8是方程x2-124x-512=0的兩個實數(shù)根,解方程x2-124x-512=0,得x1=128,x2=-4,由公比q為整數(shù),知a3=-4,a8=128,由此能夠求出公比q.
解答: 解:∵{an}是等比數(shù)列,a4a7=-512,a3+a8=124,
∴a3a8=-512,a3+a8=124,
∴a3和a8是方程x2-124x-512=0的兩個實數(shù)根,
解方程x2-124x-512=0,
得x1=128,x2=-4,
∵公比q為整數(shù),
∴a3=-4,a8=128,
∴-4q5=128,解得q=-2,
故選:B.
點評:本題主要考查了等比數(shù)列的性質(zhì).若 m、n、p、q∈N*,且m+n=p+q,則aman=apaq
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對一塊邊長為1的正方形進行如下操作:第一步,將它分割成3×3方格,接著用中心和四個角的5個小正方形,構(gòu)成如圖①所示的幾何圖形,其面積S1=
5
9
;第二步,將圖①的5個小正方形中的每個小正方形都進行與第一步相同的操作,得到圖②;依此類推,到第n步,所得圖形的面積Sn=(
5
9
n.若將以上操作類比推廣到棱長為1的正方體中,則
(Ⅰ)當n=1時,所得幾何體的體積V1=
 

(Ⅱ)到第n步時,所得幾何體的體積Vn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校一社團共有10名成員,從周一到周五每天安排兩人值日,若甲、乙必須排在同一天,且丙、丁不能排在同一天,則不同的安排方案共有(  )
A、21600B、10800
C、7200D、5400

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,滿足f(x-y)=
f(x)
f(y)
的單調(diào)遞減函數(shù)是(  )
A、f(x)=x3
B、f(x)=x 
1
2
C、f(x)=(
1
2
x
D、f(x)=3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若cos2α=
7
8
,α∈(
4
,π),則sinα等于(  )
A、
3
16
B、
1
4
C、
15
8
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
AC
AD
AB
在正方形網(wǎng)格中的位置如圖所示,若
AC
AB
AD
,則λ+μ=( 。
A、2B、-2C、3D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中特稱命題的個數(shù)是( 。
(1)有些三角形是等腰三角形              
(2)?x∈Z,x2-2x-3=0
(3)存在一個三角形,它的內(nèi)角和是170°   
(4)矩形都是平行四邊形.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)為奇函數(shù),該函數(shù)的部分圖象如圖所示,△EFG是邊長為2的等邊三角形,則f(-1)的值為( 。
A、-
3
2
B、-
6
2
C、
3
D、-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱柱ABC-A1B1C1中,D,E,F(xiàn)分別為AA1,CC1,AB的中點,M為BE的中點.求證:C1D∥平面B1FM.

查看答案和解析>>

同步練習(xí)冊答案