【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足條件b2+c2﹣a2=bc=1,cosBcosC=﹣ ,則△ABC的周長為
【答案】 +
【解析】解:△ABC中,b2+c2﹣a2=bc=1,
∴cosA= = = ,
∴A= ,
∴B+C= ,
即cos(B+C)=cosBcosC﹣sinBsinC=﹣ ;
又cosBcosC=﹣ ,
∴sinBsinC=cosBcosC+ =﹣ + = ,
∴bc=4R2sinBsinC=4R2× =1,
解得R= ,其中R為△ABC的外接圓的半徑;
∴a=2RsinA=2× ×sin = ,
∴b2+c2﹣2=1,
解得b2+c2=3,
∴(b+c)2=b2+c2+2bc=3+2×1=5,
∴b+c= ,
∴△ABC的周長為a+b+c= + .
所以答案是: + .
【考點精析】本題主要考查了余弦定理的定義的相關(guān)知識點,需要掌握余弦定理:;;才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在斜三梭柱ABC﹣A1B1C1中,側(cè)面AA1C1C是菱形,AC1與A1C交于點O,E是棱AB上一點,且OE∥平面BCC1B1
(1)求證:E是AB中點;
(2)若AC1⊥A1B,求證:AC1⊥BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,判斷函數(shù)在區(qū)間的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線過點且與圓相切 .
(I)求直線的方程;
(II)如圖,圓與軸交于兩點,點是圓上異于的任意一點,過點且與軸垂直的直線為,直線交直線于點,直線交直線于點,求證:以為直徑的圓與軸交于定點,并求出點的坐標(biāo) .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為等腰梯形,且底面與側(cè)面垂直, , 分別為線段的中點, , , ,且.
(1)證明: 平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為F,直線與x軸的交點為P,與拋物線的交點為Q,且.
求拋物線的方程;
如圖所示,過F的直線l與拋物線相交于兩點,與圓相交于兩點兩點相鄰,過兩點分別作拋物線的切線,兩條切線相交于點M,求與的面積之積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, ,函數(shù).
(1)求在區(qū)間上的最大值和最小值;
(2)若, ,求的值;
(3)若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,過橢圓M: (a>b>0)右焦點的直線x+y﹣ =0交M于A,B兩點,P為AB的中點,且OP的斜率為 .
(1)求M的方程
(2)C,D為M上的兩點,若四邊形ACBD的對角線CD⊥AB,求四邊形ACBD面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com