10.已知命題p:?x0>2使得(x0-2)ln(x0-1)>0,則?p:?x>2都有(x-2)ln(x-1)≤0.

分析 直接利用特稱命題的是全稱命題寫出結(jié)果即可.

解答 解:因?yàn)樘胤Q命題的否定是全稱命題,所以,命題p:?x0>2使得(x0-2)ln(x0-1)>0,則?p:?x>2都有(x-2)ln(x-1)≤0.
故答案為:?x>2都有(x-2)ln(x-1)≤0.

點(diǎn)評(píng) 本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知向量$\overrightarrow{a}$=(x,1),$\overrightarrow$=(2,y),若$\overrightarrow{a}$+$\overrightarrow$=(1,-1),則x+y=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.定義:如果函數(shù)f(x)在給定區(qū)間[a,b]上存在x0∈(a,b),滿足$f({x_0})=\frac{f(b)-f(a)}{b-a}$,則稱函數(shù)f(x)是[a,b]上的“斜率等值函數(shù)”,x0是函數(shù)f(x)的一個(gè)等值點(diǎn).例如函數(shù)f(x)=x2是[-2,2]上的“斜率等值函數(shù)”,0是它的一個(gè)等值點(diǎn).給出以下命題:
①函數(shù)f(x)=cosx-1是[-2π,2π]上的“斜率等值函數(shù)”;
②若f(x)是[a,b]上的偶函數(shù),則它一定是[a,b]上的“斜率等值函數(shù)”;
③若f(x)是[a,b]上的“斜率等值函數(shù)”,則它的等值點(diǎn)x0≥$\frac{a+b}{2}$;
④若函數(shù)f(x)=x2-mx-1是[-1,1]上的“斜率等值函數(shù)”,則實(shí)數(shù)m的取值范圍是(0,2);
⑤若f(x)=lnx是區(qū)間[a,b](b>a≥1)上的“斜率等值函數(shù)”,x0是它的一個(gè)等值點(diǎn),則$ln{x_0}<\frac{1}{{\sqrt{ab}}}$.
其中的真命題有①④⑤.(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.f(x)=2sinπx-x+1的零點(diǎn)個(gè)數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知直線m,n和平面α,則m∥n的一個(gè)充分不必要條件是( 。
A.m∥α,n∥αB.m⊥α,n⊥α
C.m∥α,n?αD.m,n與α所成的角相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.定義在R上的奇函數(shù)f(x)滿足f(-x)=f(x+$\frac{3}{2}$),f(2015)=2,則f(-2)+f(-3)=( 。
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知復(fù)數(shù)$z=\frac{-3+i}{i^3}$,則$\overline{z}$的虛部為(  )
A.-3B.3C.3iD.-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.分別穿有號(hào)碼為1,2,3,4,5,6的運(yùn)動(dòng)衣的六名運(yùn)動(dòng)員排成一列,其中3號(hào)運(yùn)動(dòng)員必須排在號(hào)碼比他大的運(yùn)動(dòng)員的左邊,問(wèn)有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在△ABC中,若$a=\sqrt{2},c=\sqrt{3},∠A=\frac{π}{4}$,則∠B的大小為$\frac{π}{12}$或$\frac{5π}{12}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案