【題目】某公司銷售甲、乙兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,甲產(chǎn)品的利潤(萬元)與投資額(萬元)成正比,其關(guān)系如圖所示;乙產(chǎn)品的利潤(萬元)與投資額(萬元)的算術(shù)平方根成正比,其關(guān)系式如圖所示.
(1)分別將甲、乙兩種產(chǎn)品的利潤表示為投資額的函數(shù);
(2)若該公司投資萬元資金,并全部用于甲、乙兩種產(chǎn)品的營銷,問:怎樣分配這萬元投資,才能使公司獲得最大利潤?其最大利潤為多少?
【答案】(1)甲產(chǎn)品的利潤函數(shù)為;乙產(chǎn)品的利潤函數(shù)為;(2)詳見解析.
【解析】
(1)由題意設(shè)、,分別代入點(diǎn)的坐標(biāo)即可得解;
(2)設(shè)乙產(chǎn)品的投資金額為萬元,則甲產(chǎn)品的投資金額為萬元,由題意列出總利潤的函數(shù),換元后利用二次函數(shù)的圖象與性質(zhì)分類討論即可得解.
(1)由題意設(shè)甲產(chǎn)品的利潤函數(shù)為,乙產(chǎn)品的利潤函數(shù)為.
由函數(shù)經(jīng)過點(diǎn),則即,所以;
函數(shù)經(jīng)過點(diǎn),則即,所以;
(2)設(shè)乙產(chǎn)品的投資金額為萬元,則甲產(chǎn)品的投資金額為萬元,
所獲得總利潤為萬元,
則,,
令,則,
,
該函數(shù)圖象開口向下,對稱軸為,
所以當(dāng)即時,函數(shù)在上單調(diào)遞增,
當(dāng)即時,有最大值;
當(dāng)即時,函數(shù)在上遞增,在上遞減,
當(dāng)即時,有最大值.
綜上可知,當(dāng)時,乙產(chǎn)品投資萬元,甲產(chǎn)品不作投資,該公司可獲得最大利潤,最大利潤為萬元;
當(dāng)時,乙產(chǎn)品投資萬元,甲產(chǎn)品投資萬元,該公司可獲得最大利潤,最大利潤為萬元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
若曲線在處的切線在兩坐標(biāo)軸上的截距相等,求的值;
若對,都有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線: 與拋物線: 異于原點(diǎn)的交點(diǎn)為,且拋物線在點(diǎn)處的切線與軸交于點(diǎn),拋物線在點(diǎn)處的切線與軸交于點(diǎn),與軸交于點(diǎn).
(1)若直線與拋物線交于點(diǎn), ,且,求;
(2)證明: 的面積與四邊形的面積之比為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,,則“”是“,,構(gòu)成空間的一個基底”的( )
A. 充分不必要條件B. 必要不充分條件
C. 充要條件D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為,且經(jīng)過點(diǎn).
(1)求橢圓的方程;
(2)A是橢圓與y軸正半軸的交點(diǎn),橢圓上是否存在兩點(diǎn)M,N,使得△AMN是以A為直角頂點(diǎn)的等腰直角三角形?若存在,請說明有幾個,并求出直線MN;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若5張獎券中有2張是中獎的,先由甲抽1張,然后由乙抽1張,求:
(1)甲中獎的概率;
(2)甲乙都中獎的概率;
(3)只有乙中獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令.求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品的廣告支出(單位:萬元)與銷售收入(單位:萬元)之間有下表所對應(yīng)的數(shù)據(jù):
(1)畫出表中數(shù)據(jù)的散點(diǎn)圖;
(2)求出對的線性回歸方程;
(3)若廣告費(fèi)為9萬元,則銷售收入約為多少萬元?
參考公式:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com