【題目】年以來精準(zhǔn)扶貧政策的落實(shí),使我國扶貧工作有了新進(jìn)展,貧困發(fā)生率由年底的下降到年底的,創(chuàng)造了人類減貧史上的的中國奇跡.“貧困發(fā)生率”是指低于貧困線的人口占全體人口的比例,年至年我國貧困發(fā)生率的數(shù)據(jù)如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
貧困發(fā)生率 | 10.2 | 8.5 | 7.2 | 5.7 | 4.5 | 3.1 | 1.4 |
(1)從表中所給的個(gè)貧困發(fā)生率數(shù)據(jù)中任選兩個(gè),求兩個(gè)都低于的概率;
(2)設(shè)年份代碼,利用線性回歸方程,分析年至年貧困發(fā)生率與年份代碼的相關(guān)情況,并預(yù)測年貧困發(fā)生率.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:
(的值保留到小數(shù)點(diǎn)后三位)
【答案】(1);(2)回歸直線為:;年至年貧困發(fā)生率逐年下降,平均每年下降;年的貧困發(fā)生率預(yù)計(jì)為
【解析】
(1)分別計(jì)算出總體事件個(gè)數(shù)和符合題意的基本事件個(gè)數(shù),根據(jù)古典概型概率公式求得結(jié)果;(2)根據(jù)表中數(shù)據(jù)計(jì)算出最小二乘法所需數(shù)據(jù),根據(jù)最小二乘法求得回歸直線;根據(jù)回歸直線斜率可得貧困發(fā)生率與年份的關(guān)系;代入求得年的預(yù)估值.
(1)由數(shù)據(jù)表可知,貧困發(fā)生率低于的年份有個(gè)
從個(gè)貧困發(fā)生率中任選兩個(gè)共有:種情況
選中的兩個(gè)貧困發(fā)生率低于的情況共有:種情況
所求概率為:
(2)由題意得:;
;
;
, 線性回歸直線為:
年至年貧困發(fā)生率逐年下降,平均每年下降
當(dāng)時(shí),
年的貧困發(fā)生率預(yù)計(jì)為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(為常數(shù),是自然對數(shù)的底數(shù))。
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在內(nèi)存在唯一極值點(diǎn),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線,,C與l有且僅有一個(gè)公共點(diǎn).
(Ⅰ)求a;
(Ⅱ)O為極點(diǎn),A,B為C上的兩點(diǎn),且,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,,側(cè)面底面,,.
(1)求證:平面平面;
(2)過的平面交于點(diǎn),若平面把四面體分成體積相等的兩部分,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(Ⅰ)若在上的最大值為,求實(shí)數(shù)b的值;
(Ⅱ)若對任意x∈[1,e],都有恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)在(Ⅰ)的條件下,設(shè),對任意給定的正實(shí)數(shù)a,曲線y=F(x)上是否存在兩點(diǎn)P、Q,使得△POQ是以O(O為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若在區(qū)間上存在不相等的實(shí)數(shù),使得成立,求的取值范圍;
(3)設(shè)的圖象為,的圖象為,若直線與分別交于,問是否存在整數(shù),使在處的切線與在處的切線互相平行,若存在,求出的所有值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù),設(shè)函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)對任意均有 求的取值范圍.
注:為自然對數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性.
(2)當(dāng)時(shí),證明:對任意的,有.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com