19.求證:正方體ABCD-A1B1C1D1中,對角線B1D與平面A1BC1互相垂直.

分析 連接B1D1,則證明A1C1⊥B1D,由此可證BC1⊥B1D即可證明B1D⊥平面A1C1B.

解答 證明:如圖示:

連接B1D1,則B1D1⊥A1C1,
∵BB1⊥A1C1
∴A1C1⊥平面BB1D1D,
∵B1D?平面BB1DD1,
∴A1C1⊥B1D,
∵由(2)可證BC1⊥B1D;BC1∩A1C1=C1,
∴B1D⊥平面A1C1B,得證.

點(diǎn)評 本題主要考查了直線與平面垂直的判定,考查直線和平面所成的角,求直線和平面所成的角關(guān)鍵是找到斜線在平面內(nèi)的射影,把空間角轉(zhuǎn)化為平面角求解,屬基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知$\overrightarrow{a}$=(3,4),$\overrightarrow$=(-6,-8),求cos<$\overrightarrow{a}$•$\overrightarrow$>.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知點(diǎn)A(-2,1),B(3,-1)關(guān)于直線l對稱,且點(diǎn)(2,$\frac{3}{2}$)在直線l上,則直線l的方程是2x-2y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=sin2(x-$\frac{π}{3}$)+2acos(x+$\frac{π}{6}$).
(1)若a=1,且α是第三象限角,f(α)=-$\frac{5}{9}$,求tan(α-$\frac{π}{3}$)的值;
(2)若y=f(x)在x∈R上有最小值-2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=ln(sinx+$\sqrt{si{n}^{2}x+α}$),-$\frac{π}{2}$≤x≤$\frac{π}{2}$,a為實(shí)常數(shù),且f(x)為奇函數(shù).
(1)求a的值;試說明函數(shù)f(x)的單調(diào)性,并求f(x)的值域;
(2)設(shè)g(x)為f(arcsinx)的反函數(shù),并指出g(x)的定義域與值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.${C}_{3}^{0}$+${C}_{4}^{1}$+${C}_{5}^{2}$+${C}_{6}^{3}$+…+${C}_{2013}^{2010}$的值為( 。
A.${C}_{2013}^{3}$B.${C}_{2014}^{3}$C.${C}_{2014}^{4}$D.${C}_{2013}^{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)y=lnx與y=ax2-a的圖象有公共點(diǎn).且在公共點(diǎn)處有共同的切線.則a的值為(  )
A.$\frac{e}{2}$B.1C.$\frac{1}{2}$D.1或$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知θ∈R,向量$\overrightarrow{a}$=(sinθ,cosθ),$\overrightarrow$=(2,1),若$\overrightarrow{a}$∥$\overrightarrow$,則sin2θ( 。
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{2}{5}$D.-$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\overrightarrow{a}$=($\sqrt{3}$,-1),$\overrightarrow$=( $\sqrt{3}$,1),則<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{3}$.

查看答案和解析>>

同步練習(xí)冊答案