設(shè)數(shù)列{an}的前n項和Sn=2n+1,數(shù)列{bn}滿足bn=
1
(n+1)log2an
+n.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Tn
考點:數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)當n=1時,a1=S1=4,n≥2時,an=Sn-Sn-1=2n+1-2n =2n,由此能求出數(shù)列{an}的通項公式.
(2)當n=1時,b1=
1
2log24
+1=
5
4
,T1=
5
4
;當n≥2時,bn=
1
(n+1)log22n
+n=
1
n
-
1
n+1
+n
,由此利用分組求和法和裂項求和法能求出數(shù)列{bn}的前n項和Tn
解答: 解:(1)當n=1時,a1=S1=4,…(2分)
由Sn=2n+1,得Sn-1=2n,n≥2,
∴an=Sn-Sn-1=2n+1-2n =2n,n≥2.
an=
4,n=1
2n,n≥2
.…(6分)
(2)當n=1時,b1=
1
2log24
+1=
5
4
,∴T1=
5
4
,…(7分)
當n≥2時,
bn=
1
(n+1)log22n
+n
=
1
n(n+1)
+n
=
1
n
-
1
n+1
+n
,…(9分)
Tn=
5
4
+(
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1
)
+(2+3+4+…+n)
=
1
4
+(
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1
)
+(1+2+3+4+…+n)
=
3
4
-
1
n+1
+
n(n+1)
2
,…(11分)
上式對于n=1也成立,
∴Tn=
3
4
-
1
n+1
+
n(n+1)
2
.…(12分)
點評:本題考查數(shù)列的通項公式的求法,考查為數(shù)列的前n項和的求法,解題時要認真審題,注意分組求和法和裂項求和法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知Rt△ABC中,∠C=90°,AB=5,BC=4,以BC為直徑的圓交AB于D,則BD的長為( 。
A、4
B、
9
5
C、
12
5
D、
16
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數(shù)據(jù)如下:
零件的個數(shù)x(個) 2 3 4 5
加工的時間y(小時) 2.5 3 4 4.5
(1)在給定的坐標系中畫出表中數(shù)據(jù)的散點圖;
(2)求出y關(guān)于x的線性回歸方程
y
=
b
x+
a
,并在坐標系中畫出回歸直線;
(3)試預(yù)測加工10個零件需要多少時間?
參考公式:回歸直線
y
=bx+a,其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,其中a1=b1=1,a2≠b2,且b2為a1,a2的等差中項,a2為b2,b3的等差中項.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)記cn=
1
n
(a1+a2+…+an)(b1+b2+…+bn),求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知對任意x,不等式|x-a|+|x+2|≥4恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過點M(2,1)作直線L,交橢圓
x2
16
+
y2
4
=1于A、B兩點.如果點M恰好為線段AB的三等分點,求直線L的方程.(用普通方法求解,不用參數(shù)方程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有5名男司機,4名女司機,需選派5人運貨到吳忠.
(1)如果派3名男司機、2名女司機,共多少種不同的選派方法?
(2)至少有兩名男司機,共多少種不同的選派方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的俯視圖是菱形ABCD,頂點P的投影恰好為A.
(1)求證:BD⊥PC;
(2)若AC=2a,BD=4a,四棱錐P-ABCD的體積V=2a3,求PC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且滿足:a1=1,an+1=2Sn
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=9na2n,求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

同步練習(xí)冊答案