16.已知數(shù)列an=$\frac{1}{\sqrt{a}+\sqrt{a+1}}$,求an的通項(xiàng)公式.

分析 利用“分母有理化”即可得出.

解答 解:an=$\frac{1}{\sqrt{a}+\sqrt{a+1}}$=$\frac{\sqrt{a+1}-\sqrt{a}}{(\sqrt{a+1}+\sqrt{a})(\sqrt{a+1}-\sqrt{a})}$=$\sqrt{a+1}-\sqrt{a}$,
∴an=$\sqrt{a+1}-\sqrt{a}$.

點(diǎn)評(píng) 本題考查了數(shù)列的通項(xiàng)公式、“分母有理化”,考查了變形能力,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某中學(xué)一名數(shù)學(xué)老師對(duì)全班50名學(xué)生某次考試成績(jī)分男女進(jìn)行了統(tǒng)計(jì)(滿分150分),得到右面頻率分布表:其中120分(含120分)以上為優(yōu)秀.
(1)根據(jù)以上頻率表的數(shù)據(jù),完成下面的2×2列聯(lián)表:
(2)根據(jù)(1)中表格的數(shù)據(jù)計(jì)算,你有多大把握認(rèn)為學(xué)生的數(shù)學(xué)成績(jī)與性別之間的關(guān)系?
(3)若從成績(jī)及在[130,140]的學(xué)生中任取3人,已知取到的第一個(gè)人是男生,求取到的另外2人中至少有1名女生的概率.
分組頻率
男生女生
[80,90]00.02
[90,100]0.040.08
[100,110]0.060.12
[110,120]0.100.18
[120,130]0.180.10
[130,140]0.080.04

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若對(duì)任意x∈R,不等式sin2x-2sin2x-m<0恒成立,則m的取值范圍是($\sqrt{2}$-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,∠A=2∠B,則$\frac{c}$-$\frac{a}$的取值范圍是(-1,$\frac{5}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知集合A={0,1,2,3},集合B={x|x=2a,a∈A},則A∩B=( 。
A.{0}B.{2}C.{0,2}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知x,y,z,a∈R,且x2+4y2+z2=6,則使不等式x+2y+3z≤a恒成立的a的最小值為( 。
A.6B.$\sqrt{66}$C.8D.$\sqrt{88}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,a3=$\frac{1}{8}$,且S2+$\frac{1}{16}$,S3,S4成等差數(shù)列,數(shù)列{bn}滿足bn=8n.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an•bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知在數(shù)列{an}中,a1=1,當(dāng)n≥2時(shí),其前n項(xiàng)和Sn滿足Sn2=an(Sn-$\frac{1}{2}$),則S2014的值為(  )
A.2014B.4027C.$\frac{1}{4027}$D.$\frac{1}{2014}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)函數(shù)f(x)=a(x+1)2ln(x+1)+bx(x>-1),曲線y=f(x)過(guò)點(diǎn)(e-1,e2-e+1),且在點(diǎn)(0,0)處的切線方程為y=0.
(Ⅰ)求a,b的值;
(Ⅱ)證明:當(dāng)x≥0時(shí),f(x)≥x2;
(Ⅲ)若當(dāng)x≥0時(shí),f(x)≥mx2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案