分析 由雙曲線的方程和性質(zhì)求出焦點坐標(biāo)和漸近線方程,再代入點到直線的距離公式即可求出結(jié)論.
解答 解:由雙曲線y2-2x2=1得:a=1、b=$\frac{\sqrt{2}}{2}$,
則c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{1+\frac{2}{4}}$=$\frac{\sqrt{6}}{2}$,
所以其焦點坐標(biāo)為(0,-$\frac{\sqrt{6}}{2}$),(0,$\frac{\sqrt{6}}{2}$),漸近線方程為y=±$\sqrt{2}$x,
則焦點到其漸近線的距離d=$\frac{|±\frac{\sqrt{6}}{2}|}{\sqrt{1+{(±\sqrt{2})}^{2}}}$=$\frac{\sqrt{2}}{2}$,
故答案為:$\frac{\sqrt{2}}{2}$.
點評 本題考查雙曲線的標(biāo)準(zhǔn)方程以及簡單的幾何性質(zhì),點到直線的距離公式的應(yīng)用,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(\frac{1}{3},\frac{1}{2})$ | B. | ($\frac{1}{3}$,$\frac{6}{11}$] | C. | $[\frac{1}{2},\frac{2}{3})$ | D. | $(\frac{1}{2},\frac{6}{11}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{3}$) | B. | ($\frac{1}{3}$,+∞) | C. | (0,$\frac{1}{2}$) | D. | ($\frac{1}{2}$,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com