4.如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為棱A1B1,BB1的中點(diǎn),則D1E與CF的延長(zhǎng)線交于一點(diǎn),此點(diǎn)在直線(  )
A.AD上B.B1C1C.A1D1D.BC上

分析 設(shè)交點(diǎn)為P,則P∈D1E,而D1E?平面A1B1C1D1,故P∈平面A1B1C1D1,同理可推出P∈平面BCC1B1,故P在兩平面的交線上.

解答 解:設(shè)D1E與CF的延長(zhǎng)線交于點(diǎn)P,則P∈D1E,
∵D1E?平面A1B1C1D1,
∴P∈平面A1B1C1D1,
同理可得:P∈平面BCC1B1,
即P是平面A1B1C1D1和平面BCC1B1的公共點(diǎn),
∵平面A1B1C1D1∩平面BCC1B1=B1C1,
∴P∈B1C1
故選:B.

點(diǎn)評(píng) 本題考查了平面的基本性質(zhì),找到點(diǎn)線面的置關(guān)系是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)平面直角坐標(biāo)系原點(diǎn)與極坐標(biāo)極點(diǎn)重合,x軸正半軸與極軸重合,若已知曲線C的極坐標(biāo)方程為ρ2=$\frac{12}{3co{s}^{2}θ+4si{n}^{2}θ}$,點(diǎn)F1、F2為其左、右焦點(diǎn),直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù),t∈R).
(1)求直線l的普通方程和曲線C的參數(shù)方程;
(2)求曲線C上的點(diǎn)到直線l的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線l:Ax+By+C=0(A≠0,B≠0),點(diǎn)M0(x0,y0).求證:
(1)經(jīng)過點(diǎn)M0,且平行于直線l的直線方程是:A(x-x0)+B(y-y0)=0
(2)經(jīng)過點(diǎn)M0,且垂直于直線l的直線方程:$\frac{{x-{x_0}}}{A}=\frac{{y-{y_0}}}{B}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)$f(x)=\frac{{\sqrt{2-x}}}{x-1}+{log_2}(x+1)$的定義域?yàn)椋ā 。?table class="qanwser">A.(-1,+∞)B.[-1,1)∪(1,2]C.(-1,2]D.(-1,1)∪(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若指數(shù)函數(shù)y=f(x)的圖象過點(diǎn)(1,2),則f(2)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)m,n是自然數(shù),條件甲:m3+n3是偶數(shù);條件乙:m-n是偶數(shù),則甲是乙的( 。
A.充分不必要條件B.必要不充分條件
C.充分且必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知全集U=R,A={x|2a≤x≤a+3},B={x|x<1或x>5};
(1)若a=-1,求A∩∁UB,A∪B;
(2)若A⊆∁UB,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知p:|x-a|<4,q:-x2+5x-6>0,且q是p的充分而不必要條件,則a的取值范圍為[-1,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)=cos(\frac{π}{2}-x)cosx+\sqrt{3}{sin^2}x$
(Ⅰ)求f(x)的最小正周期及單調(diào)遞減區(qū)間;
(Ⅱ)求$x∈[\frac{π}{6},\frac{π}{2}]$時(shí)函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案