求下列函數(shù)的導(dǎo)數(shù).
(1)f(x)=4x3-5x2-1895           
(2)f(x)=x3+sinx-cosx
(3)f(x)=(3x-2)(3x+3)
(4)f(x)=
4x3-5x2+2
x
考點:導(dǎo)數(shù)的運算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)導(dǎo)數(shù)計算法則計算即可.
解答: 解:(1)f′(x)=12x2-10x           
(2)f′(x)=3x2+cosx+sinx
(3)∵f(x)=(3x-2)(3x+3)=9x2+3x-6,
∴f′(x)=18x+3
 (4)f(x)=
4x3-5x2+2
x
=4x2-5x+
2
x

∴f′(x)=8x-5-
2
x2
點評:本題主要考查了導(dǎo)數(shù)的運算法則,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拋擲兩顆骰子,第一顆骰子向上的點數(shù)為x,第二顆骰子向上的點數(shù)為y,則“|x-y|>1”的概率為( 。
A、
5
9
B、
4
9
C、
1
6
D、
7
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用6種不同的顏色把圖中的A.B.C.D四塊區(qū)域分開,同一種顏色可以涂不同區(qū)域,但相 鄰區(qū)域不能涂同一種顏色,那么不同的涂色方法種數(shù)為( 。
A、400B、460
C、480D、496

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓錐母線長為6,底面圓半徑長為4,點M是母線PA的中點,AB是底面圓的直徑,半徑OC與母線PB所成的角的大小等于60°.
(1)求圓錐的側(cè)面積和體積.
(2)求異面直線MC與PO所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-x+1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間和最值;
(2)已知不等式3ln(x+1)<3x+m對一切x>-1恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的多面體中,四邊形ABCD為正方形,四邊形ADPQ是直角梯形,AD⊥DP,CD⊥平面PDAQ,AB=AQ=
1
2
DP.
(1)求證:棱錐Q-ABCCD與棱錐P-DCQ的體積相等.
(2)求異面直線CP與BQ所成角的大。ńY(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)如圖所示的程序框圖,將輸出的x、y值依次分別記為x1,x2,…,xn,…,x2007;y1,y2,…,yn…,y2007
(1)求數(shù)列{xn}的通項公式xn;
(2)寫出y1,y2,y3,y4,由此猜想出數(shù)列{yn}的一個通項公式y(tǒng)n,并證明你的結(jié)論.
(3)若zn=x1y1+x2y2+…+xnyn,求zn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

扇形AOB中心角為60°,所在圓半徑為
3
,它按如下(Ⅰ)(Ⅱ)兩種方式有內(nèi)接矩形CDEF.
(Ⅰ)矩形CDEF的頂點C、D在扇形的半徑OB上,頂點E在圓弧AB上,頂點F在半徑OA上,設(shè)∠EOB=θ;
(Ⅱ)點M是圓弧AB的中點,矩形CDEF的頂點D、E在圓弧AB上,且關(guān)于直線OM對稱,頂點C、F分別在半徑OB、OA上,設(shè)∠EOM=φ;
試研究(Ⅰ)(Ⅱ)兩種方式下矩形面積的最大值,并說明兩種方式下哪一種矩形面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一條曲線C在y軸右邊,C上每一點到點F(
1
2
,0)的距離減去它到y(tǒng)軸距離的差都是
1
2

(1)求曲線C的方程;
(2)P是曲線C上的動點,點B,C在y軸上,圓(x-1)2+y2=1內(nèi)切于△PBC,求△PBC面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案