如圖,直角△POB中,∠PBO=90°,以O為圓心、OB為半徑作圓弧交OP于A點.若圓弧
AB
等分△POB的面積,且∠AOB=α弧度,則
α
tanα
=
 
考點:扇形面積公式
專題:計算題,三角函數(shù)的求值
分析:設出扇形的半徑,求出扇形的面積,再在直角三角形中求出高PB,計算直角三角形的面積,由條件建立等式,解此等式求出tanα與α的關系,即可得出結論.
解答: 解:設扇形的半徑為r,
則扇形的面積為
1
2
α r2,直角三角形POB中,PB=rtanα,
△POB的面積為
1
2
r×rtanα,由題意得
1
2
r×rtanα=2×
1
2
α r2,
∴tanα=2α,
α
tanα
=
1
2

故答案為:
1
2
點評:本題考查扇形的面積公式及三角形的面積公式的應用,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2+x,x≤0
lnx,x>0
,若|f(x)|≥ax-2,則a的取值范圍是( 。
A、[-2,2]
B、[-2,0]
C、[1-2
2
,2]
D、[1-2
2
,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正數(shù)a,b滿足:三數(shù)a,1,b的倒數(shù)成等差數(shù)列,則a+b的最小值為( 。
A、1
B、2
C、
1
2
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y滿足約束條件
2x-y+2≥0
8x-y-4≤0
x≥0,y≥0
,若目標函數(shù)z=(
2
a
+
1
b
)x+y
(a>0,b>0)的最大值為8,則a+2b的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某商品在近30天內每件的銷售價格P(元)和時間t(天)的函數(shù)關系為:P=
t+20  (0<t<25)
-t+100  (25≤t≤30)
(t∈N*),設商品的日銷售量Q(件)與時間t(天)的函數(shù)關系為Q=40-t(0<t≤30,t∈N*),則第
 
天,這種商品的日銷售金額最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在一次聯(lián)考后,某校對甲、乙兩個理科班的數(shù)學考試成績進行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀,統(tǒng)計成績后,得到如下的2×2列聯(lián)表,且已知在甲、乙兩個理科班全部110人中隨機抽取人為優(yōu)秀的概率為
3
11

優(yōu)秀 非優(yōu)秀
甲班 10
乙班 30
合計 110
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),能否有99%的把握認為成績與班級有關系?
(3)在甲、乙兩個理科班優(yōu)秀的學生中隨機抽取兩名學生,用ξ表示抽得甲班的學生人數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x0是函數(shù)f(x)=(
1
2
x-
x
的一個零點,若x1∈(0,x0),x2∈(x0,+∞),則( 。
A、f(x1)<0,f(x2)<0
B、f(x1)>0,f(x2)<0
C、f(x1)<0,f(x2)>0
D、f(x1)>0,f(x2)>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,點A、B、C、D在⊙O上,O點在∠D的內部,四邊形OABC為平行四邊形,則∠OAD+∠OCD=
 
°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角坐標系xoy中,AB是半圓O:x2+y2=1(y≥0)的直徑,點C是半圓O上任一點,延長AC到點P,使CP=CB,當點C從點B運動到點A時,動點P的軌跡的長度是( 。
A、2π
B、
2
π
C、π
D、4
2
π

查看答案和解析>>

同步練習冊答案