11.某省就所制訂的《中長期教育改革和發(fā)展規(guī)劃綱要》(意見稿)向社會(huì)公開征求意見,為確保搜集的意見廣泛有效,派出了面向不同層次的三個(gè)工作組A、B、C,分別有組員36人、36人、18人.現(xiàn)采用分層抽樣的方法從A、B、C三個(gè)工作組中抽取共5名代表,在工作總結(jié)會(huì)上發(fā)言.
(1)求從三個(gè)工作組中分別抽取的人數(shù);
(2)若從抽取的5名代表中再隨機(jī)抽取2名參與意見稿的修改工作,求這兩名上沒有A組人員的概率.

分析 (1)由已知條件利用分層抽樣的性質(zhì)能求出從三個(gè)工作組中分別抽取的人數(shù).
(2)從抽取的5名代表中再隨機(jī)抽取2名參與意見稿的修改工作,先求出基本事件總數(shù),再求出這兩名中沒有A組人員包含的基本事件個(gè)數(shù),由此能求出這兩名中沒有A組人員的概率.

解答 解:(1)∵三個(gè)工作組A、B、C,分別有組員36人、36人、18人.
現(xiàn)采用分層抽樣的方法從A、B、C三個(gè)工作組中抽取共5名代表,
∵A組應(yīng)該抽。$36×\frac{5}{36+36+18}$=2人,
B組應(yīng)該抽取:$36×\frac{5}{36+36+18}$=2人,
C組應(yīng)該抽取:$18×\frac{5}{36+36+18}$=1人.
(2)從抽取的5名代表中再隨機(jī)抽取2名參與意見稿的修改工作,
基本事件總數(shù)n=${C}_{5}^{2}$=10,
這兩名中沒有A組人員包含的基本事件個(gè)數(shù)m=${C}_{3}^{2}$=3,
∴這兩名中沒有A組人員的概率p=$\frac{m}{n}$=$\frac{3}{10}$.

點(diǎn)評 本題考查分層抽樣的應(yīng)用,考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知在直角坐標(biāo)系中,平行四邊形ABCD的兩對角線AC、BD交于點(diǎn)O(-1,1),其中A(-2,0),B(1,1).分別求該平行四邊形的邊AD、DC所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.化簡求值
(1)2$\sqrt{3}$×$\root{3}{1.5}$×$\root{6}{12}$         
(2)(log43-log83)(log32+log92)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,且|F1F2|=2c,若橢圓上存在點(diǎn)M使得$\frac{a}{sin∠M{F}_{1}{F}_{2}}$=$\frac{c}{sin∠M{F}_{2}{F}_{1}}$,則該橢圓離心率的取值范圍是($\sqrt{2}$-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.log35+log5$\frac{1}{3}$+log7$\root{3}{49}$+$\frac{1}{lo{g}_{2}6}$+log53+log63-log315=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖,△ABC是等邊三角形,高AD、BE相交于點(diǎn)H,BC=4$\sqrt{3}$,在BE上截取BG=2,以GE為邊作等邊三角形GEF,則△ABH與△GEF重疊(陰影)部分的面積為$\frac{{5\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=2x2+2x-b,定義域?yàn)椋?1,+∞).
(Ⅰ)若函數(shù)f(x)有1個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍;
(Ⅱ)若函數(shù)f(x)有2個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知$sinαcosα=\frac{1}{8},α∈(0,\frac{π}{4})$,則sinα-cosα的值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{3}{4}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.用30cm的鐵絲圍成一個(gè)扇形,當(dāng)扇形半徑為$\frac{15}{2}$cm的時(shí)候扇形面積最大?

查看答案和解析>>

同步練習(xí)冊答案